/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?).
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see .
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "../../idlib/precompiled.h"
#pragma hdrstop
#include "qe3.h"
#define ZERO_EPSILON 1.0E-6
class idVec3D {
public:
double x, y, z;
double & operator[]( const int index ) {
return (&x)[index];
}
void Zero() {
x = y = z = 0.0;
}
};
//
// =======================================================================================================================
// compute a determinant using Sarrus rule ++timo "inline" this with a macro NOTE:: the three idVec3D are understood as
// columns of the matrix
// =======================================================================================================================
//
double SarrusDet(idVec3D a, idVec3D b, idVec3D c) {
return (double)a[0] * (double)b[1] * (double)c[2] + (double)b[0] * (double)c[1] * (double)a[2] + (double)c[0] * (double)a[1] * (double)b[2] - (double)c[0] * (double)b[1] * (double)a[2] - (double)a[1] * (double)b[0] * (double)c[2] - (double)a[0] * (double)b[2] * (double)c[1];
}
//
// =======================================================================================================================
// ++timo replace everywhere texX by texS etc. ( > and in q3map !) NOTE:: ComputeAxisBase here and in q3map code must
// always BE THE SAME ! WARNING:: special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere
// when x == 0 rotation by (0,RotY,RotZ) assigns X to normal
// =======================================================================================================================
//
void ComputeAxisBase(idVec3 &normal, idVec3D &texS, idVec3D &texT) {
double RotY, RotZ;
// do some cleaning
if (idMath::Fabs(normal[0]) < 1e-6) {
normal[0] = 0.0f;
}
if (idMath::Fabs(normal[1]) < 1e-6) {
normal[1] = 0.0f;
}
if (idMath::Fabs(normal[2]) < 1e-6) {
normal[2] = 0.0f;
}
RotY = -atan2(normal[2], idMath::Sqrt(normal[1] * normal[1] + normal[0] * normal[0]));
RotZ = atan2(normal[1], normal[0]);
// rotate (0,1,0) and (0,0,1) to compute texS and texT
texS[0] = -sin(RotZ);
texS[1] = cos(RotZ);
texS[2] = 0;
// the texT vector is along -Z ( T texture coorinates axis )
texT[0] = -sin(RotY) * cos(RotZ);
texT[1] = -sin(RotY) * sin(RotZ);
texT[2] = -cos(RotY);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void FaceToBrushPrimitFace(face_t *f) {
idVec3D texX, texY;
idVec3D proj;
// ST of (0,0) (1,0) (0,1)
idVec5 ST[3]; // [ point index ] [ xyz ST ]
//
// ++timo not used as long as brushprimit_texdef and texdef are static
// f->brushprimit_texdef.contents=f->texdef.contents;
// f->brushprimit_texdef.flags=f->texdef.flags;
// f->brushprimit_texdef.value=f->texdef.value;
// strcpy(f->brushprimit_texdef.name,f->texdef.name);
//
#ifdef _DEBUG
if (f->plane[0] == 0.0f && f->plane[1] == 0.0f && f->plane[2] == 0.0f) {
common->Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n");
}
// check d_texture
if (!f->d_texture) {
common->Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n");
return;
}
#endif
// compute axis base
ComputeAxisBase(f->plane.Normal(), texX, texY);
// compute projection vector
VectorCopy( f->plane, proj );
VectorScale(proj, -f->plane[3], proj);
//
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the
// affine plane (1,0) in plane axis base is texX in world coordinates + projection
// on the affine plane (0,1) in plane axis base is texY in world coordinates +
// projection on the affine plane use old texture code to compute the ST coords of
// these points
//
VectorCopy(proj, ST[0]);
EmitTextureCoordinates(ST[0], f->d_texture, f);
VectorCopy(texX, ST[1]);
VectorAdd(ST[1], proj, ST[1]);
EmitTextureCoordinates(ST[1], f->d_texture, f);
VectorCopy(texY, ST[2]);
VectorAdd(ST[2], proj, ST[2]);
EmitTextureCoordinates(ST[2], f->d_texture, f);
// compute texture matrix
f->brushprimit_texdef.coords[0][2] = ST[0][3];
f->brushprimit_texdef.coords[1][2] = ST[0][4];
f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2];
f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2];
}
//
// =======================================================================================================================
// compute texture coordinates for the winding points
// =======================================================================================================================
//
void EmitBrushPrimitTextureCoordinates(face_t *f, idWinding *w, patchMesh_t *patch) {
idVec3D texX, texY;
double x, y;
if (f== NULL || (w == NULL && patch == NULL)) {
return;
}
// compute axis base
ComputeAxisBase(f->plane.Normal(), texX, texY);
//
// in case the texcoords matrix is empty, build a default one same behaviour as if
// scale[0]==0 && scale[1]==0 in old code
//
if ( f->brushprimit_texdef.coords[0][0] == 0 &&
f->brushprimit_texdef.coords[1][0] == 0 &&
f->brushprimit_texdef.coords[0][1] == 0 &&
f->brushprimit_texdef.coords[1][1] == 0 ) {
f->brushprimit_texdef.coords[0][0] = 1.0f;
f->brushprimit_texdef.coords[1][1] = 1.0f;
ConvertTexMatWithQTexture(&f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture);
}
int i;
if (w) {
for (i = 0; i < w->GetNumPoints(); i++) {
x = DotProduct((*w)[i], texX);
y = DotProduct((*w)[i], texY);
(*w)[i][3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
(*w)[i][4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
}
}
if (patch) {
int j;
for ( i = 0; i < patch->width; i++ ) {
for ( j = 0; j < patch->height; j++ ) {
x = DotProduct(patch->ctrl(i, j).xyz, texX);
y = DotProduct(patch->ctrl(i, j).xyz, texY);
patch->ctrl(i, j).st.x = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
patch->ctrl(i, j).st.y = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
}
}
}
}
//
// =======================================================================================================================
// parse a brush in brush primitive format
// =======================================================================================================================
//
void BrushPrimit_Parse(brush_t *b, bool newFormat, const idVec3 origin) {
face_t *f;
int i, j;
GetToken(true);
if (strcmp(token, "{")) {
Warning("parsing brush primitive");
return;
}
do {
if (!GetToken(true)) {
break;
}
if (!strcmp(token, "}")) {
break;
}
// reading of b->epairs if any
if (strcmp(token, "(")) {
ParseEpair(&b->epairs);
}
else { // it's a face
f = Face_Alloc();
f->next = NULL;
if (!b->brush_faces) {
b->brush_faces = f;
}
else {
face_t *scan;
for (scan = b->brush_faces; scan->next; scan = scan->next)
;
scan->next = f;
}
if (newFormat) {
// read the three point plane definition
idPlane plane;
for (j = 0; j < 4; j++) {
GetToken(false);
plane[j] = atof(token);
}
f->plane = plane;
f->originalPlane = plane;
f->dirty = false;
//idWinding *w = Brush_MakeFaceWinding(b, f, true);
idWinding w;
w.BaseForPlane( plane );
for (j = 0; j < 3; j++) {
f->planepts[j].x = w[j].x + origin.x;
f->planepts[j].y = w[j].y + origin.y;
f->planepts[j].z = w[j].z + origin.z;
}
GetToken(false);
}
else {
for (i = 0; i < 3; i++) {
if (i != 0) {
GetToken(true);
}
if (strcmp(token, "(")) {
Warning("parsing brush");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->planepts[i][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush");
return;
}
}
}
// texture coordinates
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->brushprimit_texdef.coords[0][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, "(")) {
Warning("parsing brush primitive");
return;
}
for (j = 0; j < 3; j++) {
GetToken(false);
f->brushprimit_texdef.coords[1][j] = atof(token);
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
GetToken(false);
if (strcmp(token, ")")) {
Warning("parsing brush primitive");
return;
}
// read the texturedef
GetToken(false);
// strcpy(f->texdef.name, token);
if (g_qeglobals.mapVersion < 2.0) {
f->texdef.SetName(va("textures/%s", token));
}
else {
f->texdef.SetName(token);
}
if (TokenAvailable()) {
GetToken(false);
GetToken(false);
GetToken(false);
f->texdef.value = atoi(token);
}
}
} while (1);
}
//
// =======================================================================================================================
// compute a fake shift scale rot representation from the texture matrix these shift scale rot values are to be
// understood in the local axis base
// =======================================================================================================================
//
void TexMatToFakeTexCoords(float texMat[2][3], float shift[2], float *rot, float scale[2])
{
#ifdef _DEBUG
// check this matrix is orthogonal
if (idMath::Fabs(texMat[0][0] * texMat[0][1] + texMat[1][0] * texMat[1][1]) > ZERO_EPSILON) {
common->Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n");
}
#endif
scale[0] = idMath::Sqrt(texMat[0][0] * texMat[0][0] + texMat[1][0] * texMat[1][0]);
scale[1] = idMath::Sqrt(texMat[0][1] * texMat[0][1] + texMat[1][1] * texMat[1][1]);
#ifdef _DEBUG
if (scale[0] < ZERO_EPSILON || scale[1] < ZERO_EPSILON) {
common->Printf("Warning : unexpected scale==0 in TexMatToFakeTexCoords\n");
}
#endif
// compute rotate value
if (idMath::Fabs(texMat[0][0]) < ZERO_EPSILON)
{
#ifdef _DEBUG
// check brushprimit_texdef[1][0] is not zero
if (idMath::Fabs(texMat[1][0]) < ZERO_EPSILON) {
common->Printf("Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n");
}
#endif
// rotate is +-90
if (texMat[1][0] > 0) {
*rot = 90.0f;
}
else {
*rot = -90.0f;
}
}
else {
*rot = RAD2DEG(atan2(texMat[1][0], texMat[0][0]));
}
shift[0] = -texMat[0][2];
shift[1] = texMat[1][2];
}
//
// =======================================================================================================================
// compute back the texture matrix from fake shift scale rot the matrix returned must be understood as a qtexture_t
// with width=2 height=2 ( the default one )
// =======================================================================================================================
//
void FakeTexCoordsToTexMat(float shift[2], float rot, float scale[2], float texMat[2][3]) {
texMat[0][0] = scale[0] * cos(DEG2RAD(rot));
texMat[1][0] = scale[0] * sin(DEG2RAD(rot));
texMat[0][1] = -1.0f * scale[1] * sin(DEG2RAD(rot));
texMat[1][1] = scale[1] * cos(DEG2RAD(rot));
texMat[0][2] = -shift[0];
texMat[1][2] = shift[1];
}
//
// =======================================================================================================================
// convert a texture matrix between two qtexture_t if NULL for qtexture_t, basic 2x2 texture is assumed ( straight
// mapping between s/t coordinates and geometric coordinates )
// =======================================================================================================================
//
void ConvertTexMatWithQTexture(float texMat1[2][3], const idMaterial *qtex1, float texMat2[2][3], const idMaterial *qtex2, float sScale = 1.0, float tScale = 1.0) {
float s1, s2;
s1 = (qtex1 ? static_cast(qtex1->GetEditorImage()->uploadWidth) : 2.0f) / (qtex2 ? static_cast(qtex2->GetEditorImage()->uploadWidth) : 2.0f);
s2 = (qtex1 ? static_cast(qtex1->GetEditorImage()->uploadHeight) : 2.0f) / (qtex2 ? static_cast(qtex2->GetEditorImage()->uploadHeight) : 2.0f);
s1 *= sScale;
s2 *= tScale;
texMat2[0][0] = s1 * texMat1[0][0];
texMat2[0][1] = s1 * texMat1[0][1];
texMat2[0][2] = s1 * texMat1[0][2];
texMat2[1][0] = s2 * texMat1[1][0];
texMat2[1][1] = s2 * texMat1[1][1];
texMat2[1][2] = s2 * texMat1[1][2];
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void ConvertTexMatWithQTexture(brushprimit_texdef_t *texMat1, const idMaterial *qtex1, brushprimit_texdef_t *texMat2, const idMaterial *qtex2, float sScale, float tScale) {
ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2, sScale, tScale);
}
//
// =======================================================================================================================
// texture locking
// =======================================================================================================================
//
void Face_MoveTexture_BrushPrimit(face_t *f, idVec3 delta) {
idVec3D texS, texT;
double tx, ty;
idVec3D M[3]; // columns of the matrix .. easier that way
double det;
idVec3D D[2];
// compute plane axis base ( doesn't change with translation )
ComputeAxisBase(f->plane.Normal(), texS, texT);
// compute translation vector in plane axis base
tx = DotProduct(delta, texS);
ty = DotProduct(delta, texT);
// fill the data vectors
M[0][0] = tx;
M[0][1] = 1.0f + tx;
M[0][2] = tx;
M[1][0] = ty;
M[1][1] = ty;
M[1][2] = 1.0f + ty;
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet(M[0], M[1], M[2]);
f->brushprimit_texdef.coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// call Face_MoveTexture_BrushPrimit after idVec3D computation
// =======================================================================================================================
//
void Select_ShiftTexture_BrushPrimit(face_t *f, float x, float y, bool autoAdjust) {
#if 0
idVec3D texS, texT;
idVec3D delta;
ComputeAxisBase(f->plane.normal, texS, texT);
VectorScale(texS, x, texS);
VectorScale(texT, y, texT);
VectorCopy(texS, delta);
VectorAdd(delta, texT, delta);
Face_MoveTexture_BrushPrimit(f, delta);
#else
if (autoAdjust) {
x /= f->d_texture->GetEditorImage()->uploadWidth;
y /= f->d_texture->GetEditorImage()->uploadHeight;
}
f->brushprimit_texdef.coords[0][2] += x;
f->brushprimit_texdef.coords[1][2] += y;
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
#endif
}
//
// =======================================================================================================================
// best fitted 2D vector is x.X+y.Y
// =======================================================================================================================
//
void ComputeBest2DVector(idVec3 v, idVec3 X, idVec3 Y, int &x, int &y) {
double sx, sy;
sx = DotProduct(v, X);
sy = DotProduct(v, Y);
if (idMath::Fabs(sy) > idMath::Fabs(sx)) {
x = 0;
if (sy > 0.0) {
y = 1;
}
else {
y = -1;
}
}
else {
y = 0;
if (sx > 0.0) {
x = 1;
}
else {
x = -1;
}
}
}
//
// =======================================================================================================================
// in many case we know three points A,B,C in two axis base B1 and B2 and we want the matrix M so that A(B1) = T *
// A(B2) NOTE: 2D homogeneous space stuff NOTE: we don't do any check to see if there's a solution or we have a
// particular case .. need to make sure before calling NOTE: the third coord of the A,B,C point is ignored NOTE: see
// the commented out section to fill M and D ++timo TODO: update the other members to use this when possible
// =======================================================================================================================
//
void MatrixForPoints(idVec3D M[3], idVec3D D[2], brushprimit_texdef_t *T) {
//
// idVec3D M[3]; // columns of the matrix .. easier that way (the indexing is not
// standard! it's column-line .. later computations are easier that way)
//
double det;
// idVec3D D[2];
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
#if 0
// fill the data vectors
M[0][0] = A2[0];
M[0][1] = B2[0];
M[0][2] = C2[0];
M[1][0] = A2[1];
M[1][1] = B2[1];
M[1][2] = C2[1];
M[2][0] = 1.0f;
M[2][1] = 1.0f;
M[2][2] = 1.0f;
D[0][0] = A1[0];
D[0][1] = B1[0];
D[0][2] = C1[0];
D[1][0] = A1[1];
D[1][1] = B1[1];
D[1][2] = C1[1];
#endif
// solve
det = SarrusDet(M[0], M[1], M[2]);
T->coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
T->coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
T->coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
T->coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
T->coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
T->coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// ++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) can be improved .. bug #107311
// mins and maxs are the face bounding box ++timo fixme: we use the face info, mins and maxs are irrelevant
// =======================================================================================================================
//
void Face_FitTexture_BrushPrimit(face_t *f, idVec3 mins, idVec3 maxs, float height, float width) {
idVec3D BBoxSTMin, BBoxSTMax;
idWinding *w;
int i, j;
double val;
idVec3D M[3], D[2];
// idVec3D N[2],Mf[2];
brushprimit_texdef_t N;
idVec3D Mf[2];
//memset(f->brushprimit_texdef.coords, 0, sizeof(f->brushprimit_texdef.coords));
//f->brushprimit_texdef.coords[0][0] = 1.0f;
//f->brushprimit_texdef.coords[1][1] = 1.0f;
//ConvertTexMatWithQTexture(&f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture);
//
// we'll be working on a standardized texture size ConvertTexMatWithQTexture(
// &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); compute
// the BBox in ST coords
//
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
BBoxSTMin[0] = BBoxSTMin[1] = BBoxSTMin[2] = 999999;
BBoxSTMax[0] = BBoxSTMax[1] = BBoxSTMax[2] = -999999;
w = f->face_winding;
if (w) {
for (i = 0; i < w->GetNumPoints(); i++) {
// AddPointToBounds in 2D on (S,T) coordinates
for (j = 0; j < 2; j++) {
val = (*w)[i][j + 3];
if (val < BBoxSTMin[j]) {
BBoxSTMin[j] = val;
}
if (val > BBoxSTMax[j]) {
BBoxSTMax[j] = val;
}
}
}
}
//
// we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1])
// (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space the BP
// matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in
// (Sfit,Tfit) space to these three points we have A(Sfit,Tfit) = (0,0) = Mf *
// A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) so we solve the system for N
// and then Mf = N * M
//
M[0][0] = BBoxSTMin[0];
M[0][1] = BBoxSTMax[0];
M[0][2] = BBoxSTMin[0];
M[1][0] = BBoxSTMin[1];
M[1][1] = BBoxSTMin[1];
M[1][2] = BBoxSTMax[1];
D[0][0] = 0.0f;
D[0][1] = width;
D[0][2] = 0.0f;
D[1][0] = 0.0f;
D[1][1] = 0.0f;
D[1][2] = height;
MatrixForPoints(M, D, &N);
#if 0
//
// FIT operation gives coordinates of three points of the bounding box in (S',T'),
// our target axis base A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight)
// and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1])
// B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) we
// compute the N transformation so that: A(S',T') = N * A(S,T)
//
N[0][0] = (BBoxSTMax[0] - BBoxSTMin[0]) / width;
N[0][1] = 0.0f;
N[0][2] = BBoxSTMin[0];
N[1][0] = 0.0f;
N[1][1] = (BBoxSTMax[1] - BBoxSTMin[1]) / height;
N[1][2] = BBoxSTMin[1];
#endif
// the final matrix is the product (Mf stands for Mfit)
Mf[0][0] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][0] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][0];
Mf[0][1] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][1] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][1];
Mf[0][2] = N.coords[0][0] *
f->brushprimit_texdef.coords[0][2] +
N.coords[0][1] *
f->brushprimit_texdef.coords[1][2] +
N.coords[0][2];
Mf[1][0] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][0] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][0];
Mf[1][1] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][1] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][1];
Mf[1][2] = N.coords[1][0] *
f->brushprimit_texdef.coords[0][2] +
N.coords[1][1] *
f->brushprimit_texdef.coords[1][2] +
N.coords[1][2];
// copy back
VectorCopy(Mf[0], f->brushprimit_texdef.coords[0]);
VectorCopy(Mf[1], f->brushprimit_texdef.coords[1]);
//
// handle the texture size ConvertTexMatWithQTexture( &f->brushprimit_texdef,
// NULL, &f->brushprimit_texdef, f->d_texture );
//
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_ScaleTexture_BrushPrimit(face_t *face, float sS, float sT) {
if (!g_qeglobals.m_bBrushPrimitMode) {
Sys_Status("BP mode required\n");
return;
}
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
BPMatScale(pBP->coords, sS, sT);
// now emit the coordinates on the winding
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_RotateTexture_BrushPrimit(face_t *face, float amount, idVec3 origin) {
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
if (amount) {
float x = pBP->coords[0][0];
float y = pBP->coords[0][1];
float x1 = pBP->coords[1][0];
float y1 = pBP->coords[1][1];
float s = sin( DEG2RAD( amount ) );
float c = cos( DEG2RAD( amount ) );
pBP->coords[0][0] = (((x - origin[0]) * c) - ((y - origin[1]) * s)) + origin[0];
pBP->coords[0][1] = (((x - origin[0]) * s) + ((y - origin[1]) * c)) + origin[1];
pBP->coords[1][0] = (((x1 - origin[0]) * c) - ((y1 - origin[1]) * s)) + origin[0];
pBP->coords[1][1] = (((x1 - origin[0]) * s) + ((y1 - origin[1]) * c)) + origin[1];
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
}
//
// TEXTURE LOCKING (Relevant to the editor only?)
// internally used for texture locking on rotation and flipping the general
// algorithm is the same for both lockings, it's only the geometric transformation
// part that changes so I wanted to keep it in a single function if there are more
// linear transformations that need the locking, going to a C++ or code pointer
// solution would be best (but right now I want to keep brush_primit.cpp striclty
// C)
//
bool txlock_bRotation;
// rotation locking params
int txl_nAxis;
double txl_fDeg;
idVec3D txl_vOrigin;
// flip locking params
idVec3D txl_matrix[3];
idVec3D txl_origin;
/*
=======================================================================================================================
=======================================================================================================================
*/
void TextureLockTransformation_BrushPrimit(face_t *f) {
idVec3D Orig, texS, texT; // axis base of initial plane
// used by transformation algo
idVec3D temp;
int j;
//idVec3D vRotate; // rotation vector
idVec3D rOrig, rvecS, rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
idVec3 rNormal;
idVec3D rtexS, rtexT; // axis base for the transformed plane
idVec3D lOrig, lvecS, lvecT; // [2] are not used ( but usefull for debugging )
idVec3D M[3];
double det;
idVec3D D[2];
// silence compiler warnings
rOrig.Zero();
rvecS = rOrig;
rvecT = rOrig;
rNormal.x = rOrig.x;
rNormal.y = rOrig.y;
rNormal.z = rOrig.z;
// compute plane axis base
ComputeAxisBase(f->plane.Normal(), texS, texT);
Orig.x = vec3_origin.x;
Orig.y = vec3_origin.y;
Orig.z = vec3_origin.z;
//
// compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base
// ) after transformation (0,0) (1,0) (0,1) ( expressed in initial plane axis base
// ) <-> (0,0,0) texS texT ( expressed world axis base ) input: Orig, texS, texT
// (and the global locking params) ouput: rOrig, rvecS, rvecT, rNormal
//
if (txlock_bRotation) {
/*
// rotation vector
vRotate.x = vec3_origin.x;
vRotate.y = vec3_origin.y;
vRotate.z = vec3_origin.z;
vRotate[txl_nAxis] = txl_fDeg;
VectorRotate3Origin(Orig, vRotate, txl_vOrigin, rOrig);
VectorRotate3Origin(texS, vRotate, txl_vOrigin, rvecS);
VectorRotate3Origin(texT, vRotate, txl_vOrigin, rvecT);
// compute normal of plane after rotation
VectorRotate3(f->plane.Normal(), vRotate, rNormal);
*/
}
else {
VectorSubtract(Orig, txl_origin, temp);
for (j = 0; j < 3; j++) {
rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
VectorSubtract(texS, txl_origin, temp);
for (j = 0; j < 3; j++) {
rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
VectorSubtract(texT, txl_origin, temp);
for (j = 0; j < 3; j++) {
rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j];
}
//
// we also need the axis base of the target plane, apply the transformation matrix
// to the normal too..
//
for (j = 0; j < 3; j++) {
rNormal[j] = DotProduct(f->plane, txl_matrix[j]);
}
}
// compute rotated plane axis base
ComputeAxisBase(rNormal, rtexS, rtexT);
// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
lOrig[0] = DotProduct(rOrig, rtexS);
lOrig[1] = DotProduct(rOrig, rtexT);
lvecS[0] = DotProduct(rvecS, rtexS);
lvecS[1] = DotProduct(rvecS, rtexT);
lvecT[0] = DotProduct(rvecT, rtexS);
lvecT[1] = DotProduct(rvecT, rtexT);
M[0][0] = lOrig[0];
M[1][0] = lOrig[1];
M[2][0] = 1.0f;
M[0][1] = lvecS[0];
M[1][1] = lvecS[1];
M[2][1] = 1.0f;
M[0][2] = lvecT[0];
M[1][2] = lvecT[1];
M[2][2] = 1.0f;
// fill data vector
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet(M[0], M[1], M[2]);
f->brushprimit_texdef.coords[0][0] = SarrusDet(D[0], M[1], M[2]) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet(M[0], D[0], M[2]) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet(M[0], M[1], D[0]) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet(D[1], M[1], M[2]) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet(M[0], D[1], M[2]) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet(M[0], M[1], D[1]) / det;
}
//
// =======================================================================================================================
// texture locking called before the points on the face are actually rotated
// =======================================================================================================================
//
void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, idVec3 vOrigin) {
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = true;
txl_nAxis = nAxis;
txl_fDeg = fDeg;
VectorCopy(vOrigin, txl_vOrigin);
TextureLockTransformation_BrushPrimit(f);
}
//
// =======================================================================================================================
// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane o
// rientation) this matches the select_matrix algo used in select.cpp this needs to be called on the face BEFORE any
// geometric transformation it will compute the texture matrix that will represent the same texture on the face after
// the geometric transformation is done
// =======================================================================================================================
//
void ApplyMatrix_BrushPrimit(face_t *f, idMat3 matrix, idVec3 origin) {
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = false;
VectorCopy(matrix[0], txl_matrix[0]);
VectorCopy(matrix[1], txl_matrix[1]);
VectorCopy(matrix[2], txl_matrix[2]);
VectorCopy(origin, txl_origin);
TextureLockTransformation_BrushPrimit(f);
}
//
// =======================================================================================================================
// don't do C==A!
// =======================================================================================================================
//
void BPMatMul(float A[2][3], float B[2][3], float C[2][3]) {
C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0];
C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0];
C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1];
C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1];
C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2];
C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2];
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void BPMatDump(float A[2][3]) {
common->Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]);
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void BPMatRotate(float A[2][3], float theta) {
float m[2][3];
float aux[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = cos( DEG2RAD( theta ) );
m[0][1] = -sin( DEG2RAD( theta ) );
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
BPMatMul(A, m, aux);
BPMatCopy(aux, A);
}
void Face_GetScale_BrushPrimit(face_t *face, float *s, float *t, float *rot) {
idVec3D texS, texT;
ComputeAxisBase(face->plane.Normal(), texS, texT);
if (face == NULL || face->face_winding == NULL) {
return;
}
// find ST coordinates for the center of the face
double Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
Os += DotProduct((*face->face_winding)[i], texS);
Ot += DotProduct((*face->face_winding)[i], texT);
}
Os /= face->face_winding->GetNumPoints();
Ot /= face->face_winding->GetNumPoints();
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
// here we have a special case, M is a translation and it's inverse is easy
float BPO[2][3];
float aux[2][3];
float m[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = 1;
m[1][1] = 1;
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(m, pBP->coords, aux);
m[0][2] = Os;
m[1][2] = Ot; // now M^-1
BPMatMul(aux, m, BPO);
// apply a given scale (on S and T)
ConvertTexMatWithQTexture(BPO, face->d_texture, aux, NULL);
*s = idMath::Sqrt(aux[0][0] * aux[0][0] + aux[1][0] * aux[1][0]);
*t = idMath::Sqrt(aux[0][1] * aux[0][1] + aux[1][1] * aux[1][1]);
// compute rotate value
if (idMath::Fabs(face->brushprimit_texdef.coords[0][0]) < ZERO_EPSILON)
{
// rotate is +-90
if (face->brushprimit_texdef.coords[1][0] > 0) {
*rot = 90.0f;
}
else {
*rot = -90.0f;
}
}
else {
*rot = RAD2DEG(atan2(face->brushprimit_texdef.coords[1][0] / (*s) ? (*s) : 1.0f, face->brushprimit_texdef.coords[0][0] / (*t) ? (*t) : 1.0f));
}
}
/*
=======================================================================================================================
=======================================================================================================================
*/
void Face_SetExplicitScale_BrushPrimit(face_t *face, float s, float t) {
idVec3D texS, texT;
ComputeAxisBase(face->plane.Normal(), texS, texT);
// find ST coordinates for the center of the face
double Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
Os += DotProduct((*face->face_winding)[i], texS);
Ot += DotProduct((*face->face_winding)[i], texT);
}
Os /= face->face_winding->GetNumPoints();
Ot /= face->face_winding->GetNumPoints();
brushprimit_texdef_t *pBP = &face->brushprimit_texdef;
// here we have a special case, M is a translation and it's inverse is easy
float BPO[2][3];
float aux[2][3];
float m[2][3];
memset(&m, 0, sizeof (float) *6);
m[0][0] = 1;
m[1][1] = 1;
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(m, pBP->coords, aux);
m[0][2] = Os;
m[1][2] = Ot; // now M^-1
BPMatMul(aux, m, BPO);
// apply a given scale (on S and T)
ConvertTexMatWithQTexture(BPO, face->d_texture, aux, NULL);
// reset the scale (normalize the matrix)
double v1, v2;
v1 = idMath::Sqrt(aux[0][0] * aux[0][0] + aux[1][0] * aux[1][0]);
v2 = idMath::Sqrt(aux[0][1] * aux[0][1] + aux[1][1] * aux[1][1]);
if (s == 0.0) {
s = v1;
}
if (t == 0.0) {
t = v2;
}
double sS, sT;
// put the values for scale on S and T here:
sS = s / v1;
sT = t / v2;
aux[0][0] *= sS;
aux[1][0] *= sS;
aux[0][1] *= sT;
aux[1][1] *= sT;
ConvertTexMatWithQTexture(aux, NULL, BPO, face->d_texture);
BPMatMul(m, BPO, aux); // m is M^-1
m[0][2] = -Os;
m[1][2] = -Ot;
BPMatMul(aux, m, pBP->coords);
// now emit the coordinates on the winding
EmitBrushPrimitTextureCoordinates(face, face->face_winding);
}
void Face_FlipTexture_BrushPrimit(face_t *f, bool y) {
float s, t, rot;
Face_GetScale_BrushPrimit(f, &s, &t, &rot);
if (y) {
Face_SetExplicitScale_BrushPrimit(f, 0.0, -t);
} else {
Face_SetExplicitScale_BrushPrimit(f, -s, 0.0);
}
#if 0
idVec3D texS, texT;
ComputeAxisBase(f->plane.normal, texS, texT);
double Os = 0, Ot = 0;
for (int i = 0; i < f->face_winding->numpoints; i++) {
Os += DotProduct(f->face_winding->p[i], texS);
Ot += DotProduct(f->face_winding->p[i], texT);
}
Ot = abs(Ot);
Ot *= t;
Ot /= f->d_texture->GetEditorImage()->uploadHeight;
Os = abs(Os);
Os *= s;
Os /= f->d_texture->GetEditorImage()->uploadWidth;
if (y) {
Face_FitTexture_BrushPrimit(f, texS, texT, -Ot, 1.0);
} else {
Face_FitTexture_BrushPrimit(f, texS, texT, 1.0, -Os);
}
EmitBrushPrimitTextureCoordinates(f, f->face_winding);
#endif
}
void Brush_FlipTexture_BrushPrimit(brush_t *b, bool y) {
for (face_t *f = b->brush_faces; f; f = f->next) {
Face_FlipTexture_BrushPrimit(f, y);
}
}
void Face_SetAxialScale_BrushPrimit(face_t *face, bool y) {
if (!face) {
return;
}
if (!face->face_winding) {
return;
}
//float oldS, oldT, oldR;
//Face_GetScale_BrushPrimit(face, &oldS, &oldT, &oldR);
idVec3D min, max;
min.x = min.y = min.z = 999999.0;
max.x = max.y = max.z = -999999.0;
for (int i = 0; i < face->face_winding->GetNumPoints(); i++) {
for (int j = 0; j < 3; j++) {
if ((*face->face_winding)[i][j] < min[j]) {
min[j] = (*face->face_winding)[i][j];
}
if ((*face->face_winding)[i][j] > max[j]) {
max[j] = (*face->face_winding)[i][j];
}
}
}
idVec3 len;
if (g_bAxialMode) {
if (g_axialAnchor >= 0 && g_axialAnchor < face->face_winding->GetNumPoints() &&
g_axialDest >= 0 && g_axialDest < face->face_winding->GetNumPoints() &&
g_axialAnchor != g_axialDest) {
len = (*face->face_winding)[g_axialDest].ToVec3() - (*face->face_winding)[g_axialAnchor].ToVec3();
} else {
return;
}
} else {
if (y) {
len = (*face->face_winding)[2].ToVec3() - (*face->face_winding)[1].ToVec3();
} else {
len = (*face->face_winding)[1].ToVec3() - (*face->face_winding)[0].ToVec3();
}
}
double dist = len.Length();
double width = idMath::Fabs(max.x - min.x);
double height = idMath::Fabs(max.z - min.z);
//len = maxs[2] - mins[2];
//double yDist = len.Length();
if (dist != 0.0) {
if (dist > face->d_texture->GetEditorImage()->uploadHeight) {
height = 1.0 / (dist / face->d_texture->GetEditorImage()->uploadHeight);
} else {
height /= dist;
}
if (dist > face->d_texture->GetEditorImage()->uploadWidth) {
width = 1.0 / (dist / face->d_texture->GetEditorImage()->uploadWidth);
} else {
width /= dist;
}
}
if (y) {
Face_SetExplicitScale_BrushPrimit(face, 0.0, height);
//oldT = oldT / height * 10;
//Select_ShiftTexture_BrushPrimit(face, 0, -oldT, true);
} else {
Face_SetExplicitScale_BrushPrimit(face, width, 0.0);
}
/*
common->Printf("Face x: %f y: %f xr: %f yr: %f\n", x, y, xRatio, yRatio);
common->Printf("Texture x: %i y: %i \n",face->d_texture->GetEditorImage()->uploadWidth, face->d_texture->GetEditorImage()->uploadHeight);
idVec3D texS, texT;
ComputeAxisBase(face->plane.normal, texS, texT);
float Os = 0, Ot = 0;
for (int i = 0; i < face->face_winding->numpoints; i++) {
Os += DotProduct(face->face_winding->p[i], texS);
Ot += DotProduct(face->face_winding->p[i], texT);
}
common->Printf("Face2 x: %f y: %f \n", Os, Ot);
Os /= face->face_winding->numpoints;
Ot /= face->face_winding->numpoints;
//Os /= face->face_winding->numpoints;
//Ot /= face->face_winding->numpoints;
*/
}