/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "sys/platform.h" #include "idlib/math/Math.h" const float idMath::PI = 3.14159265358979323846f; const float idMath::TWO_PI = 2.0f * PI; const float idMath::HALF_PI = 0.5f * PI; const float idMath::ONEFOURTH_PI = 0.25f * PI; const float idMath::E = 2.71828182845904523536f; const float idMath::SQRT_TWO = 1.41421356237309504880f; const float idMath::SQRT_THREE = 1.73205080756887729352f; const float idMath::SQRT_1OVER2 = 0.70710678118654752440f; const float idMath::SQRT_1OVER3 = 0.57735026918962576450f; const float idMath::M_DEG2RAD = PI / 180.0f; const float idMath::M_RAD2DEG = 180.0f / PI; const float idMath::M_SEC2MS = 1000.0f; const float idMath::M_MS2SEC = 0.001f; const float idMath::INFINITY = 1e30f; const float idMath::FLT_EPSILON = 1.192092896e-07f; bool idMath::initialized = false; dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table /* =============== idMath::Init =============== */ void idMath::Init( void ) { union _flint fi, fo; for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) { fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS); fo.f = (float)( 1.0 / sqrt( fi.f ) ); iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<= 2 && exponentBits <= 8 ); assert( mantissaBits >= 2 && mantissaBits <= 23 ); int maxBits = ( ( ( 1 << ( exponentBits - 1 ) ) - 1 ) << mantissaBits ) | ( ( 1 << mantissaBits ) - 1 ); int minBits = ( ( ( 1 << exponentBits ) - 2 ) << mantissaBits ) | 1; float max = BitsToFloat( maxBits, exponentBits, mantissaBits ); float min = BitsToFloat( minBits, exponentBits, mantissaBits ); if ( f >= 0.0f ) { if ( f >= max ) { return maxBits; } else if ( f <= min ) { return minBits; } } else { if ( f <= -max ) { return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) ); } else if ( f >= -min ) { return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) ); } } exponentBits--; i = *reinterpret_cast(&f); sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1; exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS; mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ); value = sign << ( 1 + exponentBits + mantissaBits ); value |= ( ( INTSIGNBITSET( exponent ) << exponentBits ) | ( abs( exponent ) & ( ( 1 << exponentBits ) - 1 ) ) ) << mantissaBits; value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits ); return value; } /* ================ idMath::BitsToFloat ================ */ float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) { static int exponentSign[2] = { 1, -1 }; int sign, exponent, mantissa, value; assert( exponentBits >= 2 && exponentBits <= 8 ); assert( mantissaBits >= 2 && mantissaBits <= 23 ); exponentBits--; sign = i >> ( 1 + exponentBits + mantissaBits ); exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) * exponentSign[( i >> ( exponentBits + mantissaBits ) ) & 1]; mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits ); value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa; return *reinterpret_cast(&value); }