/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../idlib/precompiled.h" #pragma hdrstop #ifndef USE_LIBC_MALLOC #define USE_LIBC_MALLOC 0 #endif #ifndef CRASH_ON_STATIC_ALLOCATION // #define CRASH_ON_STATIC_ALLOCATION #endif //=============================================================== // // idHeap // //=============================================================== #define SMALL_HEADER_SIZE ( (int) ( sizeof( byte ) + sizeof( byte ) ) ) #define MEDIUM_HEADER_SIZE ( (int) ( sizeof( mediumHeapEntry_s ) + sizeof( byte ) ) ) #define LARGE_HEADER_SIZE ( (int) ( sizeof( dword * ) + sizeof( byte ) ) ) #define ALIGN_SIZE( bytes ) ( ( (bytes) + ALIGN - 1 ) & ~(ALIGN - 1) ) #define SMALL_ALIGN( bytes ) ( ALIGN_SIZE( (bytes) + SMALL_HEADER_SIZE ) - SMALL_HEADER_SIZE ) #define MEDIUM_SMALLEST_SIZE ( ALIGN_SIZE( 256 ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ) ) class idHeap { public: idHeap( void ); ~idHeap( void ); // frees all associated data void Init( void ); // initialize void * Allocate( const dword bytes ); // allocate memory void Free( void *p ); // free memory void * Allocate16( const dword bytes );// allocate 16 byte aligned memory void Free16( void *p ); // free 16 byte aligned memory dword Msize( void *p ); // return size of data block void Dump( void ); void AllocDefragBlock( void ); // hack for huge renderbumps private: enum { ALIGN = 8 // memory alignment in bytes }; enum { INVALID_ALLOC = 0xdd, SMALL_ALLOC = 0xaa, // small allocation MEDIUM_ALLOC = 0xbb, // medium allocaction LARGE_ALLOC = 0xcc // large allocaction }; struct page_s { // allocation page void * data; // data pointer to allocated memory dword dataSize; // number of bytes of memory 'data' points to page_s * next; // next free page in same page manager page_s * prev; // used only when allocated dword largestFree; // this data used by the medium-size heap manager void * firstFree; // pointer to first free entry }; struct mediumHeapEntry_s { page_s * page; // pointer to page dword size; // size of block mediumHeapEntry_s * prev; // previous block mediumHeapEntry_s * next; // next block mediumHeapEntry_s * prevFree; // previous free block mediumHeapEntry_s * nextFree; // next free block dword freeBlock; // non-zero if free block }; // variables void * smallFirstFree[256/ALIGN+1]; // small heap allocator lists (for allocs of 1-255 bytes) page_s * smallCurPage; // current page for small allocations dword smallCurPageOffset; // byte offset in current page page_s * smallFirstUsedPage; // first used page of the small heap manager page_s * mediumFirstFreePage; // first partially free page page_s * mediumLastFreePage; // last partially free page page_s * mediumFirstUsedPage; // completely used page page_s * largeFirstUsedPage; // first page used by the large heap manager page_s * swapPage; dword pagesAllocated; // number of pages currently allocated dword pageSize; // size of one alloc page in bytes dword pageRequests; // page requests dword OSAllocs; // number of allocs made to the OS int c_heapAllocRunningCount; void *defragBlock; // a single huge block that can be allocated // at startup, then freed when needed // methods page_s * AllocatePage( dword bytes ); // allocate page from the OS void FreePage( idHeap::page_s *p ); // free an OS allocated page void * SmallAllocate( dword bytes ); // allocate memory (1-255 bytes) from small heap manager void SmallFree( void *ptr ); // free memory allocated by small heap manager void * MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded ); void * MediumAllocate( dword bytes ); // allocate memory (256-32768 bytes) from medium heap manager void MediumFree( void *ptr ); // free memory allocated by medium heap manager void * LargeAllocate( dword bytes ); // allocate large block from OS directly void LargeFree( void *ptr ); // free memory allocated by large heap manager void ReleaseSwappedPages( void ); void FreePageReal( idHeap::page_s *p ); }; /* ================ idHeap::Init ================ */ void idHeap::Init () { OSAllocs = 0; pageRequests = 0; pageSize = 65536 - sizeof( idHeap::page_s ); pagesAllocated = 0; // reset page allocation counter largeFirstUsedPage = NULL; // init large heap manager swapPage = NULL; memset( smallFirstFree, 0, sizeof(smallFirstFree) ); // init small heap manager smallFirstUsedPage = NULL; smallCurPage = AllocatePage( pageSize ); assert( smallCurPage ); smallCurPageOffset = SMALL_ALIGN( 0 ); defragBlock = NULL; mediumFirstFreePage = NULL; // init medium heap manager mediumLastFreePage = NULL; mediumFirstUsedPage = NULL; c_heapAllocRunningCount = 0; } /* ================ idHeap::idHeap ================ */ idHeap::idHeap( void ) { Init(); } /* ================ idHeap::~idHeap returns all allocated memory back to OS ================ */ idHeap::~idHeap( void ) { idHeap::page_s *p; if ( smallCurPage ) { FreePage( smallCurPage ); // free small-heap current allocation page } p = smallFirstUsedPage; // free small-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p= next; } p = largeFirstUsedPage; // free large-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } p = mediumFirstFreePage; // free medium-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } p = mediumFirstUsedPage; // free medium-heap allocated completely used pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } ReleaseSwappedPages(); if ( defragBlock ) { free( defragBlock ); } assert( pagesAllocated == 0 ); } /* ================ idHeap::AllocDefragBlock ================ */ void idHeap::AllocDefragBlock( void ) { int size = 0x40000000; if ( defragBlock ) { return; } while( 1 ) { defragBlock = malloc( size ); if ( defragBlock ) { break; } size >>= 1; } idLib::common->Printf( "Allocated a %i mb defrag block\n", size / (1024*1024) ); } /* ================ idHeap::Allocate ================ */ void *idHeap::Allocate( const dword bytes ) { if ( !bytes ) { return NULL; } c_heapAllocRunningCount++; #if USE_LIBC_MALLOC return malloc( bytes ); #else if ( !(bytes & ~255) ) { return SmallAllocate( bytes ); } if ( !(bytes & ~32767) ) { return MediumAllocate( bytes ); } return LargeAllocate( bytes ); #endif } /* ================ idHeap::Free ================ */ void idHeap::Free( void *p ) { if ( !p ) { return; } c_heapAllocRunningCount--; #if USE_LIBC_MALLOC free( p ); #else switch( ((byte *)(p))[-1] ) { case SMALL_ALLOC: { SmallFree( p ); break; } case MEDIUM_ALLOC: { MediumFree( p ); break; } case LARGE_ALLOC: { LargeFree( p ); break; } default: { idLib::common->FatalError( "idHeap::Free: invalid memory block (%s)", idLib::sys->GetCallStackCurStr( 4 ) ); break; } } #endif } /* ================ idHeap::Allocate16 ================ */ void *idHeap::Allocate16( const dword bytes ) { byte *ptr, *alignedPtr; ptr = (byte *) malloc( bytes + 16 + 4 ); if ( !ptr ) { if ( defragBlock ) { idLib::common->Printf( "Freeing defragBlock on alloc of %i.\n", bytes ); free( defragBlock ); defragBlock = NULL; ptr = (byte *) malloc( bytes + 16 + 4 ); AllocDefragBlock(); } if ( !ptr ) { common->FatalError( "malloc failure for %i", bytes ); } } alignedPtr = (byte *) ( ( (int) ptr ) + 15 & ~15 ); if ( alignedPtr - ptr < 4 ) { alignedPtr += 16; } *((int *)(alignedPtr - 4)) = (int) ptr; return (void *) alignedPtr; } /* ================ idHeap::Free16 ================ */ void idHeap::Free16( void *p ) { free( (void *) *((int *) (( (byte *) p ) - 4)) ); } /* ================ idHeap::Msize returns size of allocated memory block p = pointer to memory block Notes: size may not be the same as the size in the original allocation request (due to block alignment reasons). ================ */ dword idHeap::Msize( void *p ) { if ( !p ) { return 0; } #if USE_LIBC_MALLOC #ifdef _WIN32 return _msize( p ); #else return 0; #endif #else switch( ((byte *)(p))[-1] ) { case SMALL_ALLOC: { return SMALL_ALIGN( ((byte *)(p))[-SMALL_HEADER_SIZE] * ALIGN ); } case MEDIUM_ALLOC: { return ((mediumHeapEntry_s *)(((byte *)(p)) - ALIGN_SIZE( MEDIUM_HEADER_SIZE )))->size - ALIGN_SIZE( MEDIUM_HEADER_SIZE ); } case LARGE_ALLOC: { return ((idHeap::page_s*)(*((dword *)(((byte *)p) - ALIGN_SIZE( LARGE_HEADER_SIZE )))))->dataSize - ALIGN_SIZE( LARGE_HEADER_SIZE ); } default: { idLib::common->FatalError( "idHeap::Msize: invalid memory block (%s)", idLib::sys->GetCallStackCurStr( 4 ) ); return 0; } } #endif } /* ================ idHeap::Dump dump contents of the heap ================ */ void idHeap::Dump( void ) { idHeap::page_s *pg; for ( pg = smallFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (in use by small heap)\n", pg->data, pg->dataSize); } if ( smallCurPage ) { pg = smallCurPage; idLib::common->Printf( "%p bytes %-8d (small heap active page)\n", pg->data, pg->dataSize ); } for ( pg = mediumFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (completely used by medium heap)\n", pg->data, pg->dataSize ); } for ( pg = mediumFirstFreePage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (partially used by medium heap)\n", pg->data, pg->dataSize ); } for ( pg = largeFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (fully used by large heap)\n", pg->data, pg->dataSize ); } idLib::common->Printf( "pages allocated : %d\n", pagesAllocated ); } /* ================ idHeap::FreePageReal frees page to be used by the OS p = page to free ================ */ void idHeap::FreePageReal( idHeap::page_s *p ) { assert( p ); ::free( p ); } /* ================ idHeap::ReleaseSwappedPages releases the swap page to OS ================ */ void idHeap::ReleaseSwappedPages () { if ( swapPage ) { FreePageReal( swapPage ); } swapPage = NULL; } /* ================ idHeap::AllocatePage allocates memory from the OS bytes = page size in bytes returns pointer to page ================ */ idHeap::page_s* idHeap::AllocatePage( dword bytes ) { idHeap::page_s* p; pageRequests++; if ( swapPage && swapPage->dataSize == bytes ) { // if we've got a swap page somewhere p = swapPage; swapPage = NULL; } else { dword size; size = bytes + sizeof(idHeap::page_s); p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 ); if ( !p ) { if ( defragBlock ) { idLib::common->Printf( "Freeing defragBlock on alloc of %i.\n", size + ALIGN - 1 ); free( defragBlock ); defragBlock = NULL; p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 ); AllocDefragBlock(); } if ( !p ) { common->FatalError( "malloc failure for %i", bytes ); } } p->data = (void *) ALIGN_SIZE( (int)((byte *)(p)) + sizeof( idHeap::page_s ) ); p->dataSize = size - sizeof(idHeap::page_s); p->firstFree = NULL; p->largestFree = 0; OSAllocs++; } p->prev = NULL; p->next = NULL; pagesAllocated++; return p; } /* ================ idHeap::FreePage frees a page back to the operating system p = pointer to page ================ */ void idHeap::FreePage( idHeap::page_s *p ) { assert( p ); if ( p->dataSize == pageSize && !swapPage ) { // add to swap list? swapPage = p; } else { FreePageReal( p ); } pagesAllocated--; } //=============================================================== // // small heap code // //=============================================================== /* ================ idHeap::SmallAllocate allocate memory (1-255 bytes) from the small heap manager bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::SmallAllocate( dword bytes ) { // we need the at least sizeof( dword ) bytes for the free list if ( bytes < sizeof( dword ) ) { bytes = sizeof( dword ); } // increase the number of bytes if necessary to make sure the next small allocation is aligned bytes = SMALL_ALIGN( bytes ); byte *smallBlock = (byte *)(smallFirstFree[bytes / ALIGN]); if ( smallBlock ) { dword *link = (dword *)(smallBlock + SMALL_HEADER_SIZE); smallBlock[1] = SMALL_ALLOC; // allocation identifier smallFirstFree[bytes / ALIGN] = (void *)(*link); return (void *)(link); } dword bytesLeft = (long)(pageSize) - smallCurPageOffset; // if we need to allocate a new page if ( bytes >= bytesLeft ) { smallCurPage->next = smallFirstUsedPage; smallFirstUsedPage = smallCurPage; smallCurPage = AllocatePage( pageSize ); if ( !smallCurPage ) { return NULL; } // make sure the first allocation is aligned smallCurPageOffset = SMALL_ALIGN( 0 ); } smallBlock = ((byte *)smallCurPage->data) + smallCurPageOffset; smallBlock[0] = (byte)(bytes / ALIGN); // write # of bytes/ALIGN smallBlock[1] = SMALL_ALLOC; // allocation identifier smallCurPageOffset += bytes + SMALL_HEADER_SIZE; // increase the offset on the current page return ( smallBlock + SMALL_HEADER_SIZE ); // skip the first two bytes } /* ================ idHeap::SmallFree frees a block of memory allocated by SmallAllocate() call data = pointer to block of memory ================ */ void idHeap::SmallFree( void *ptr ) { ((byte *)(ptr))[-1] = INVALID_ALLOC; byte *d = ( (byte *)ptr ) - SMALL_HEADER_SIZE; dword *dt = (dword *)ptr; // index into the table with free small memory blocks dword ix = *d; // check if the index is correct if ( ix > (256 / ALIGN) ) { idLib::common->FatalError( "SmallFree: invalid memory block" ); } *dt = (dword)smallFirstFree[ix]; // write next index smallFirstFree[ix] = (void *)d; // link } //=============================================================== // // medium heap code // // Medium-heap allocated pages not returned to OS until heap destructor // called (re-used instead on subsequent medium-size malloc requests). // //=============================================================== /* ================ idHeap::MediumAllocateFromPage performs allocation using the medium heap manager from a given page p = page sizeNeeded = # of bytes needed returns pointer to allocated memory ================ */ void *idHeap::MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded ) { mediumHeapEntry_s *best,*nw = NULL; byte *ret; best = (mediumHeapEntry_s *)(p->firstFree); // first block is largest assert( best ); assert( best->size == p->largestFree ); assert( best->size >= sizeNeeded ); // if we can allocate another block from this page after allocating sizeNeeded bytes if ( best->size >= (dword)( sizeNeeded + MEDIUM_SMALLEST_SIZE ) ) { nw = (mediumHeapEntry_s *)((byte *)best + best->size - sizeNeeded); nw->page = p; nw->prev = best; nw->next = best->next; nw->prevFree = NULL; nw->nextFree = NULL; nw->size = sizeNeeded; nw->freeBlock = 0; // used block if ( best->next ) { best->next->prev = nw; } best->next = nw; best->size -= sizeNeeded; p->largestFree = best->size; } else { if ( best->prevFree ) { best->prevFree->nextFree = best->nextFree; } else { p->firstFree = (void *)best->nextFree; } if ( best->nextFree ) { best->nextFree->prevFree = best->prevFree; } best->prevFree = NULL; best->nextFree = NULL; best->freeBlock = 0; // used block nw = best; p->largestFree = 0; } ret = (byte *)(nw) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ); ret[-1] = MEDIUM_ALLOC; // allocation identifier return (void *)(ret); } /* ================ idHeap::MediumAllocate allocate memory (256-32768 bytes) from medium heap manager bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::MediumAllocate( dword bytes ) { idHeap::page_s *p; void *data; dword sizeNeeded = ALIGN_SIZE( bytes ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ); // find first page with enough space for ( p = mediumFirstFreePage; p; p = p->next ) { if ( p->largestFree >= sizeNeeded ) { break; } } if ( !p ) { // need to allocate new page? p = AllocatePage( pageSize ); if ( !p ) { return NULL; // malloc failure! } p->prev = NULL; p->next = mediumFirstFreePage; if (p->next) { p->next->prev = p; } else { mediumLastFreePage = p; } mediumFirstFreePage = p; p->largestFree = pageSize; p->firstFree = (void *)p->data; mediumHeapEntry_s *e; e = (mediumHeapEntry_s *)(p->firstFree); e->page = p; // make sure ((byte *)e + e->size) is aligned e->size = pageSize & ~(ALIGN - 1); e->prev = NULL; e->next = NULL; e->prevFree = NULL; e->nextFree = NULL; e->freeBlock = 1; } data = MediumAllocateFromPage( p, sizeNeeded ); // allocate data from page // if the page can no longer serve memory, move it away from free list // (so that it won't slow down the later alloc queries) // this modification speeds up the pageWalk from O(N) to O(sqrt(N)) // a call to free may swap this page back to the free list if ( p->largestFree < MEDIUM_SMALLEST_SIZE ) { if ( p == mediumLastFreePage ) { mediumLastFreePage = p->prev; } if ( p == mediumFirstFreePage ) { mediumFirstFreePage = p->next; } if ( p->prev ) { p->prev->next = p->next; } if ( p->next ) { p->next->prev = p->prev; } // link to "completely used" list p->prev = NULL; p->next = mediumFirstUsedPage; if ( p->next ) { p->next->prev = p; } mediumFirstUsedPage = p; return data; } // re-order linked list (so that next malloc query starts from current // matching block) -- this speeds up both the page walks and block walks if ( p != mediumFirstFreePage ) { assert( mediumLastFreePage ); assert( mediumFirstFreePage ); assert( p->prev); mediumLastFreePage->next = mediumFirstFreePage; mediumFirstFreePage->prev = mediumLastFreePage; mediumLastFreePage = p->prev; p->prev->next = NULL; p->prev = NULL; mediumFirstFreePage = p; } return data; } /* ================ idHeap::MediumFree frees a block allocated by the medium heap manager ptr = pointer to data block ================ */ void idHeap::MediumFree( void *ptr ) { ((byte *)(ptr))[-1] = INVALID_ALLOC; mediumHeapEntry_s *e = (mediumHeapEntry_s *)((byte *)ptr - ALIGN_SIZE( MEDIUM_HEADER_SIZE )); idHeap::page_s *p = e->page; bool isInFreeList; isInFreeList = p->largestFree >= MEDIUM_SMALLEST_SIZE; assert( e->size ); assert( e->freeBlock == 0 ); mediumHeapEntry_s *prev = e->prev; // if the previous block is free we can merge if ( prev && prev->freeBlock ) { prev->size += e->size; prev->next = e->next; if ( e->next ) { e->next->prev = prev; } e = prev; } else { e->prevFree = NULL; // link to beginning of free list e->nextFree = (mediumHeapEntry_s *)p->firstFree; if ( e->nextFree ) { assert( !(e->nextFree->prevFree) ); e->nextFree->prevFree = e; } p->firstFree = e; p->largestFree = e->size; e->freeBlock = 1; // mark block as free } mediumHeapEntry_s *next = e->next; // if the next block is free we can merge if ( next && next->freeBlock ) { e->size += next->size; e->next = next->next; if ( next->next ) { next->next->prev = e; } if ( next->prevFree ) { next->prevFree->nextFree = next->nextFree; } else { assert( next == p->firstFree ); p->firstFree = next->nextFree; } if ( next->nextFree ) { next->nextFree->prevFree = next->prevFree; } } if ( p->firstFree ) { p->largestFree = ((mediumHeapEntry_s *)(p->firstFree))->size; } else { p->largestFree = 0; } // did e become the largest block of the page ? if ( e->size > p->largestFree ) { assert( e != p->firstFree ); p->largestFree = e->size; if ( e->prevFree ) { e->prevFree->nextFree = e->nextFree; } if ( e->nextFree ) { e->nextFree->prevFree = e->prevFree; } e->nextFree = (mediumHeapEntry_s *)p->firstFree; e->prevFree = NULL; if ( e->nextFree ) { e->nextFree->prevFree = e; } p->firstFree = e; } // if page wasn't in free list (because it was near-full), move it back there if ( !isInFreeList ) { // remove from "completely used" list if ( p->prev ) { p->prev->next = p->next; } if ( p->next ) { p->next->prev = p->prev; } if ( p == mediumFirstUsedPage ) { mediumFirstUsedPage = p->next; } p->next = NULL; p->prev = mediumLastFreePage; if ( mediumLastFreePage ) { mediumLastFreePage->next = p; } mediumLastFreePage = p; if ( !mediumFirstFreePage ) { mediumFirstFreePage = p; } } } //=============================================================== // // large heap code // //=============================================================== /* ================ idHeap::LargeAllocate allocates a block of memory from the operating system bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::LargeAllocate( dword bytes ) { idHeap::page_s *p = AllocatePage( bytes + ALIGN_SIZE( LARGE_HEADER_SIZE ) ); assert( p ); if ( !p ) { return NULL; } byte * d = (byte*)(p->data) + ALIGN_SIZE( LARGE_HEADER_SIZE ); dword * dw = (dword*)(d - ALIGN_SIZE( LARGE_HEADER_SIZE )); dw[0] = (dword)p; // write pointer back to page table d[-1] = LARGE_ALLOC; // allocation identifier // link to 'large used page list' p->prev = NULL; p->next = largeFirstUsedPage; if ( p->next ) { p->next->prev = p; } largeFirstUsedPage = p; return (void *)(d); } /* ================ idHeap::LargeFree frees a block of memory allocated by the 'large memory allocator' p = pointer to allocated memory ================ */ void idHeap::LargeFree( void *ptr) { idHeap::page_s* pg; ((byte *)(ptr))[-1] = INVALID_ALLOC; // get page pointer pg = (idHeap::page_s *)(*((dword *)(((byte *)ptr) - ALIGN_SIZE( LARGE_HEADER_SIZE )))); // unlink from doubly linked list if ( pg->prev ) { pg->prev->next = pg->next; } if ( pg->next ) { pg->next->prev = pg->prev; } if ( pg == largeFirstUsedPage ) { largeFirstUsedPage = pg->next; } pg->next = pg->prev = NULL; FreePage(pg); } //=============================================================== // // memory allocation all in one place // //=============================================================== #undef new static idHeap * mem_heap = NULL; static memoryStats_t mem_total_allocs = { 0, 0x0fffffff, -1, 0 }; static memoryStats_t mem_frame_allocs; static memoryStats_t mem_frame_frees; /* ================== Mem_ClearFrameStats ================== */ void Mem_ClearFrameStats( void ) { mem_frame_allocs.num = mem_frame_frees.num = 0; mem_frame_allocs.minSize = mem_frame_frees.minSize = 0x0fffffff; mem_frame_allocs.maxSize = mem_frame_frees.maxSize = -1; mem_frame_allocs.totalSize = mem_frame_frees.totalSize = 0; } /* ================== Mem_GetFrameStats ================== */ void Mem_GetFrameStats( memoryStats_t &allocs, memoryStats_t &frees ) { allocs = mem_frame_allocs; frees = mem_frame_frees; } /* ================== Mem_GetStats ================== */ void Mem_GetStats( memoryStats_t &stats ) { stats = mem_total_allocs; } /* ================== Mem_UpdateStats ================== */ void Mem_UpdateStats( memoryStats_t &stats, int size ) { stats.num++; if ( size < stats.minSize ) { stats.minSize = size; } if ( size > stats.maxSize ) { stats.maxSize = size; } stats.totalSize += size; } /* ================== Mem_UpdateAllocStats ================== */ void Mem_UpdateAllocStats( int size ) { Mem_UpdateStats( mem_frame_allocs, size ); Mem_UpdateStats( mem_total_allocs, size ); } /* ================== Mem_UpdateFreeStats ================== */ void Mem_UpdateFreeStats( int size ) { Mem_UpdateStats( mem_frame_frees, size ); mem_total_allocs.num--; mem_total_allocs.totalSize -= size; } #ifndef ID_DEBUG_MEMORY /* ================== Mem_Alloc ================== */ void *Mem_Alloc( const int size ) { if ( !size ) { return NULL; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif return malloc( size ); } void *mem = mem_heap->Allocate( size ); Mem_UpdateAllocStats( mem_heap->Msize( mem ) ); return mem; } /* ================== Mem_Free ================== */ void Mem_Free( void *ptr ) { if ( !ptr ) { return; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif free( ptr ); return; } Mem_UpdateFreeStats( mem_heap->Msize( ptr ) ); mem_heap->Free( ptr ); } /* ================== Mem_Alloc16 ================== */ void *Mem_Alloc16( const int size ) { if ( !size ) { return NULL; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif return malloc( size ); } void *mem = mem_heap->Allocate16( size ); // make sure the memory is 16 byte aligned assert( ( ((int)mem) & 15) == 0 ); return mem; } /* ================== Mem_Free16 ================== */ void Mem_Free16( void *ptr ) { if ( !ptr ) { return; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif free( ptr ); return; } // make sure the memory is 16 byte aligned assert( ( ((int)ptr) & 15) == 0 ); mem_heap->Free16( ptr ); } /* ================== Mem_ClearedAlloc ================== */ void *Mem_ClearedAlloc( const int size ) { void *mem = Mem_Alloc( size ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* ================== Mem_ClearedAlloc ================== */ void Mem_AllocDefragBlock( void ) { mem_heap->AllocDefragBlock(); } /* ================== Mem_CopyString ================== */ char *Mem_CopyString( const char *in ) { char *out; out = (char *)Mem_Alloc( strlen(in) + 1 ); strcpy( out, in ); return out; } /* ================== Mem_Dump_f ================== */ void Mem_Dump_f( const idCmdArgs &args ) { } /* ================== Mem_DumpCompressed_f ================== */ void Mem_DumpCompressed_f( const idCmdArgs &args ) { } /* ================== Mem_Init ================== */ void Mem_Init( void ) { mem_heap = new idHeap; Mem_ClearFrameStats(); } /* ================== Mem_Shutdown ================== */ void Mem_Shutdown( void ) { idHeap *m = mem_heap; mem_heap = NULL; delete m; } /* ================== Mem_EnableLeakTest ================== */ void Mem_EnableLeakTest( const char *name ) { } #else /* !ID_DEBUG_MEMORY */ #undef Mem_Alloc #undef Mem_ClearedAlloc #undef Com_ClearedReAlloc #undef Mem_Free #undef Mem_CopyString #undef Mem_Alloc16 #undef Mem_Free16 #define MAX_CALLSTACK_DEPTH 6 // size of this struct must be a multiple of 16 bytes typedef struct debugMemory_s { const char * fileName; int lineNumber; int frameNumber; int size; address_t callStack[MAX_CALLSTACK_DEPTH]; struct debugMemory_s * prev; struct debugMemory_s * next; } debugMemory_t; static debugMemory_t * mem_debugMemory = NULL; static char mem_leakName[256] = ""; /* ================== Mem_CleanupFileName ================== */ const char *Mem_CleanupFileName( const char *fileName ) { int i1, i2; idStr newFileName; static char newFileNames[4][MAX_STRING_CHARS]; static int index; newFileName = fileName; newFileName.BackSlashesToSlashes(); i1 = newFileName.Find( "neo", false ); if ( i1 >= 0 ) { i1 = newFileName.Find( "/", false, i1 ); newFileName = newFileName.Right( newFileName.Length() - ( i1 + 1 ) ); } while( 1 ) { i1 = newFileName.Find( "/../" ); if ( i1 <= 0 ) { break; } i2 = i1 - 1; while( i2 > 1 && newFileName[i2-1] != '/' ) { i2--; } newFileName = newFileName.Left( i2 - 1 ) + newFileName.Right( newFileName.Length() - ( i1 + 4 ) ); } index = ( index + 1 ) & 3; strncpy( newFileNames[index], newFileName.c_str(), sizeof( newFileNames[index] ) ); return newFileNames[index]; } /* ================== Mem_Dump ================== */ void Mem_Dump( const char *fileName ) { int i, numBlocks, totalSize; char dump[32], *ptr; debugMemory_t *b; idStr module, funcName; FILE *f; f = fopen( fileName, "wb" ); if ( !f ) { return; } totalSize = 0; for ( numBlocks = 0, b = mem_debugMemory; b; b = b->next, numBlocks++ ) { ptr = ((char *) b) + sizeof(debugMemory_t); totalSize += b->size; for ( i = 0; i < (sizeof(dump)-1) && i < b->size; i++) { if ( ptr[i] >= 32 && ptr[i] < 127 ) { dump[i] = ptr[i]; } else { dump[i] = '_'; } } dump[i] = '\0'; if ( ( b->size >> 10 ) != 0 ) { fprintf( f, "size: %6d KB: %s, line: %d [%s], call stack: %s\r\n", ( b->size >> 10 ), Mem_CleanupFileName(b->fileName), b->lineNumber, dump, idLib::sys->GetCallStackStr( b->callStack, MAX_CALLSTACK_DEPTH ) ); } else { fprintf( f, "size: %7d B: %s, line: %d [%s], call stack: %s\r\n", b->size, Mem_CleanupFileName(b->fileName), b->lineNumber, dump, idLib::sys->GetCallStackStr( b->callStack, MAX_CALLSTACK_DEPTH ) ); } } idLib::sys->ShutdownSymbols(); fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks ); fprintf( f, "%8d KB memory allocated\r\n", ( totalSize >> 10 ) ); fclose( f ); } /* ================== Mem_Dump_f ================== */ void Mem_Dump_f( const idCmdArgs &args ) { const char *fileName; if ( args.Argc() >= 2 ) { fileName = args.Argv( 1 ); } else { fileName = "memorydump.txt"; } Mem_Dump( fileName ); } /* ================== Mem_DumpCompressed ================== */ typedef struct allocInfo_s { const char * fileName; int lineNumber; int size; int numAllocs; address_t callStack[MAX_CALLSTACK_DEPTH]; struct allocInfo_s * next; } allocInfo_t; typedef enum { MEMSORT_SIZE, MEMSORT_LOCATION, MEMSORT_NUMALLOCS, MEMSORT_CALLSTACK } memorySortType_t; void Mem_DumpCompressed( const char *fileName, memorySortType_t memSort, int sortCallStack, int numFrames ) { int numBlocks, totalSize, r, j; debugMemory_t *b; allocInfo_t *a, *nexta, *allocInfo = NULL, *sortedAllocInfo = NULL, *prevSorted, *nextSorted; idStr module, funcName; FILE *f; // build list with memory allocations totalSize = 0; numBlocks = 0; for ( b = mem_debugMemory; b; b = b->next ) { if ( numFrames && b->frameNumber < idLib::frameNumber - numFrames ) { continue; } numBlocks++; totalSize += b->size; // search for an allocation from the same source location for ( a = allocInfo; a; a = a->next ) { if ( a->lineNumber != b->lineNumber ) { continue; } for ( j = 0; j < MAX_CALLSTACK_DEPTH; j++ ) { if ( a->callStack[j] != b->callStack[j] ) { break; } } if ( j < MAX_CALLSTACK_DEPTH ) { continue; } if ( idStr::Cmp( a->fileName, b->fileName ) != 0 ) { continue; } a->numAllocs++; a->size += b->size; break; } // if this is an allocation from a new source location if ( !a ) { a = (allocInfo_t *) ::malloc( sizeof( allocInfo_t ) ); a->fileName = b->fileName; a->lineNumber = b->lineNumber; a->size = b->size; a->numAllocs = 1; for ( j = 0; j < MAX_CALLSTACK_DEPTH; j++ ) { a->callStack[j] = b->callStack[j]; } a->next = allocInfo; allocInfo = a; } } // sort list for ( a = allocInfo; a; a = nexta ) { nexta = a->next; prevSorted = NULL; switch( memSort ) { // sort on size case MEMSORT_SIZE: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->size > nextSorted->size ) { break; } prevSorted = nextSorted; } break; } // sort on file name and line number case MEMSORT_LOCATION: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { r = idStr::Cmp( Mem_CleanupFileName( a->fileName ), Mem_CleanupFileName( nextSorted->fileName ) ); if ( r < 0 || ( r == 0 && a->lineNumber < nextSorted->lineNumber ) ) { break; } prevSorted = nextSorted; } break; } // sort on the number of allocations case MEMSORT_NUMALLOCS: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->numAllocs > nextSorted->numAllocs ) { break; } prevSorted = nextSorted; } break; } // sort on call stack case MEMSORT_CALLSTACK: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->callStack[sortCallStack] < nextSorted->callStack[sortCallStack] ) { break; } prevSorted = nextSorted; } break; } } if ( !prevSorted ) { a->next = sortedAllocInfo; sortedAllocInfo = a; } else { prevSorted->next = a; a->next = nextSorted; } } f = fopen( fileName, "wb" ); if ( !f ) { return; } // write list to file for ( a = sortedAllocInfo; a; a = nexta ) { nexta = a->next; fprintf( f, "size: %6d KB, allocs: %5d: %s, line: %d, call stack: %s\r\n", (a->size >> 10), a->numAllocs, Mem_CleanupFileName(a->fileName), a->lineNumber, idLib::sys->GetCallStackStr( a->callStack, MAX_CALLSTACK_DEPTH ) ); ::free( a ); } idLib::sys->ShutdownSymbols(); fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks ); fprintf( f, "%8d KB memory allocated\r\n", ( totalSize >> 10 ) ); fclose( f ); } /* ================== Mem_DumpCompressed_f ================== */ void Mem_DumpCompressed_f( const idCmdArgs &args ) { int argNum; const char *arg, *fileName; memorySortType_t memSort = MEMSORT_LOCATION; int sortCallStack = 0, numFrames = 0; // get cmd-line options argNum = 1; arg = args.Argv( argNum ); while( arg[0] == '-' ) { arg = args.Argv( ++argNum ); if ( idStr::Icmp( arg, "s" ) == 0 ) { memSort = MEMSORT_SIZE; } else if ( idStr::Icmp( arg, "l" ) == 0 ) { memSort = MEMSORT_LOCATION; } else if ( idStr::Icmp( arg, "a" ) == 0 ) { memSort = MEMSORT_NUMALLOCS; } else if ( idStr::Icmp( arg, "cs1" ) == 0 ) { memSort = MEMSORT_CALLSTACK; sortCallStack = 2; } else if ( idStr::Icmp( arg, "cs2" ) == 0 ) { memSort = MEMSORT_CALLSTACK; sortCallStack = 1; } else if ( idStr::Icmp( arg, "cs3" ) == 0 ) { memSort = MEMSORT_CALLSTACK; sortCallStack = 0; } else if ( arg[0] == 'f' ) { numFrames = atoi( arg + 1 ); } else { idLib::common->Printf( "memoryDumpCompressed [options] [filename]\n" "options:\n" " -s sort on size\n" " -l sort on location\n" " -a sort on the number of allocations\n" " -cs1 sort on first function on call stack\n" " -cs2 sort on second function on call stack\n" " -cs3 sort on third function on call stack\n" " -f only report allocations the last X frames\n" "By default the memory allocations are sorted on location.\n" "By default a 'memorydump.txt' is written if no file name is specified.\n" ); return; } arg = args.Argv( ++argNum ); } if ( argNum >= args.Argc() ) { fileName = "memorydump.txt"; } else { fileName = arg; } Mem_DumpCompressed( fileName, memSort, sortCallStack, numFrames ); } /* ================== Mem_AllocDebugMemory ================== */ void *Mem_AllocDebugMemory( const int size, const char *fileName, const int lineNumber, const bool align16 ) { void *p; debugMemory_t *m; if ( !size ) { return NULL; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif // NOTE: set a breakpoint here to find memory allocations before mem_heap is initialized return malloc( size ); } if ( align16 ) { p = mem_heap->Allocate16( size + sizeof( debugMemory_t ) ); } else { p = mem_heap->Allocate( size + sizeof( debugMemory_t ) ); } Mem_UpdateAllocStats( size ); m = (debugMemory_t *) p; m->fileName = fileName; m->lineNumber = lineNumber; m->frameNumber = idLib::frameNumber; m->size = size; m->next = mem_debugMemory; m->prev = NULL; if ( mem_debugMemory ) { mem_debugMemory->prev = m; } mem_debugMemory = m; idLib::sys->GetCallStack( m->callStack, MAX_CALLSTACK_DEPTH ); return ( ( (byte *) p ) + sizeof( debugMemory_t ) ); } /* ================== Mem_FreeDebugMemory ================== */ void Mem_FreeDebugMemory( void *p, const char *fileName, const int lineNumber, const bool align16 ) { debugMemory_t *m; if ( !p ) { return; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif // NOTE: set a breakpoint here to find memory being freed before mem_heap is initialized free( p ); return; } m = (debugMemory_t *) ( ( (byte *) p ) - sizeof( debugMemory_t ) ); if ( m->size < 0 ) { idLib::common->FatalError( "memory freed twice, first from %s, now from %s", idLib::sys->GetCallStackStr( m->callStack, MAX_CALLSTACK_DEPTH ), idLib::sys->GetCallStackCurStr( MAX_CALLSTACK_DEPTH ) ); } Mem_UpdateFreeStats( m->size ); if ( m->next ) { m->next->prev = m->prev; } if ( m->prev ) { m->prev->next = m->next; } else { mem_debugMemory = m->next; } m->fileName = fileName; m->lineNumber = lineNumber; m->frameNumber = idLib::frameNumber; m->size = -m->size; idLib::sys->GetCallStack( m->callStack, MAX_CALLSTACK_DEPTH ); if ( align16 ) { mem_heap->Free16( m ); } else { mem_heap->Free( m ); } } /* ================== Mem_Alloc ================== */ void *Mem_Alloc( const int size, const char *fileName, const int lineNumber ) { if ( !size ) { return NULL; } return Mem_AllocDebugMemory( size, fileName, lineNumber, false ); } /* ================== Mem_Free ================== */ void Mem_Free( void *ptr, const char *fileName, const int lineNumber ) { if ( !ptr ) { return; } Mem_FreeDebugMemory( ptr, fileName, lineNumber, false ); } /* ================== Mem_Alloc16 ================== */ void *Mem_Alloc16( const int size, const char *fileName, const int lineNumber ) { if ( !size ) { return NULL; } void *mem = Mem_AllocDebugMemory( size, fileName, lineNumber, true ); // make sure the memory is 16 byte aligned assert( ( ((int)mem) & 15) == 0 ); return mem; } /* ================== Mem_Free16 ================== */ void Mem_Free16( void *ptr, const char *fileName, const int lineNumber ) { if ( !ptr ) { return; } // make sure the memory is 16 byte aligned assert( ( ((int)ptr) & 15) == 0 ); Mem_FreeDebugMemory( ptr, fileName, lineNumber, true ); } /* ================== Mem_ClearedAlloc ================== */ void *Mem_ClearedAlloc( const int size, const char *fileName, const int lineNumber ) { void *mem = Mem_Alloc( size, fileName, lineNumber ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* ================== Mem_CopyString ================== */ char *Mem_CopyString( const char *in, const char *fileName, const int lineNumber ) { char *out; out = (char *)Mem_Alloc( strlen(in) + 1, fileName, lineNumber ); strcpy( out, in ); return out; } /* ================== Mem_Init ================== */ void Mem_Init( void ) { mem_heap = new idHeap; } /* ================== Mem_Shutdown ================== */ void Mem_Shutdown( void ) { if ( mem_leakName[0] != '\0' ) { Mem_DumpCompressed( va( "%s_leak_size.txt", mem_leakName ), MEMSORT_SIZE, 0, 0 ); Mem_DumpCompressed( va( "%s_leak_location.txt", mem_leakName ), MEMSORT_LOCATION, 0, 0 ); Mem_DumpCompressed( va( "%s_leak_cs1.txt", mem_leakName ), MEMSORT_CALLSTACK, 2, 0 ); } idHeap *m = mem_heap; mem_heap = NULL; delete m; } /* ================== Mem_EnableLeakTest ================== */ void Mem_EnableLeakTest( const char *name ) { idStr::Copynz( mem_leakName, name, sizeof( mem_leakName ) ); } #endif /* !ID_DEBUG_MEMORY */