/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "sys/platform.h" #include "idlib/math/Lcp.h" static idCVar lcp_showFailures( "lcp_showFailures", "0", CVAR_SYSTEM | CVAR_BOOL, "show LCP solver failures" ); const float LCP_BOUND_EPSILON = 1e-5f; const float LCP_ACCEL_EPSILON = 1e-5f; const float LCP_DELTA_ACCEL_EPSILON = 1e-9f; const float LCP_DELTA_FORCE_EPSILON = 1e-9f; #define IGNORE_UNSATISFIABLE_VARIABLES //=============================================================== // M // idLCP_Square MrE // E //=============================================================== class idLCP_Square : public idLCP { public: virtual bool Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ); private: idMatX m; // original matrix idVecX b; // right hand side idVecX lo, hi; // low and high bounds idVecX f, a; // force and acceleration idVecX delta_f, delta_a; // delta force and delta acceleration idMatX clamped; // LU factored sub matrix for clamped variables idVecX diagonal; // reciprocal of diagonal of U of the LU factored sub matrix for clamped variables int numUnbounded; // number of unbounded variables int numClamped; // number of clamped variables float ** rowPtrs; // pointers to the rows of m int * boxIndex; // box index int * side; // tells if a variable is at the low boundary = -1, high boundary = 1 or inbetween = 0 int * permuted; // index to keep track of the permutation bool padded; // set to true if the rows of the initial matrix are 16 byte padded private: bool FactorClamped( void ); void SolveClamped( idVecX &x, const float *b ); void Swap( int i, int j ); void AddClamped( int r ); void RemoveClamped( int r ); void CalcForceDelta( int d, float dir ); void CalcAccelDelta( int d ); void ChangeForce( int d, float step ); void ChangeAccel( int d, float step ); void GetMaxStep( int d, float dir, float &maxStep, int &limit, int &limitSide ) const; }; /* ============ idLCP_Square::FactorClamped ============ */ bool idLCP_Square::FactorClamped( void ) { int i, j, k; float s, d; for ( i = 0; i < numClamped; i++ ) { memcpy( clamped[i], rowPtrs[i], numClamped * sizeof( float ) ); } for ( i = 0; i < numClamped; i++ ) { s = idMath::Fabs( clamped[i][i] ); if ( s == 0.0f ) { return false; } diagonal[i] = d = 1.0f / clamped[i][i]; for ( j = i + 1; j < numClamped; j++ ) { clamped[j][i] *= d; } for ( j = i + 1; j < numClamped; j++ ) { d = clamped[j][i]; for ( k = i + 1; k < numClamped; k++ ) { clamped[j][k] -= d * clamped[i][k]; } } } return true; } /* ============ idLCP_Square::SolveClamped ============ */ void idLCP_Square::SolveClamped( idVecX &x, const float *b ) { int i, j; float sum; // solve L for ( i = 0; i < numClamped; i++ ) { sum = b[i]; for ( j = 0; j < i; j++ ) { sum -= clamped[i][j] * x[j]; } x[i] = sum; } // solve U for ( i = numClamped - 1; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numClamped; j++ ) { sum -= clamped[i][j] * x[j]; } x[i] = sum * diagonal[i]; } } /* ============ idLCP_Square::Swap ============ */ void idLCP_Square::Swap( int i, int j ) { if ( i == j ) { return; } idSwap( rowPtrs[i], rowPtrs[j] ); m.SwapColumns( i, j ); b.SwapElements( i, j ); lo.SwapElements( i, j ); hi.SwapElements( i, j ); a.SwapElements( i, j ); f.SwapElements( i, j ); if ( boxIndex ) { idSwap( boxIndex[i], boxIndex[j] ); } idSwap( side[i], side[j] ); idSwap( permuted[i], permuted[j] ); } /* ============ idLCP_Square::AddClamped ============ */ void idLCP_Square::AddClamped( int r ) { int i, j; float sum; assert( r >= numClamped ); // add a row at the bottom and a column at the right of the factored // matrix for the clamped variables Swap( numClamped, r ); // add row to L for ( i = 0; i < numClamped; i++ ) { sum = rowPtrs[numClamped][i]; for ( j = 0; j < i; j++ ) { sum -= clamped[numClamped][j] * clamped[j][i]; } clamped[numClamped][i] = sum * diagonal[i]; } // add column to U for ( i = 0; i <= numClamped; i++ ) { sum = rowPtrs[i][numClamped]; for ( j = 0; j < i; j++ ) { sum -= clamped[i][j] * clamped[j][numClamped]; } clamped[i][numClamped] = sum; } diagonal[numClamped] = 1.0f / clamped[numClamped][numClamped]; numClamped++; } /* ============ idLCP_Square::RemoveClamped ============ */ void idLCP_Square::RemoveClamped( int r ) { int i, j; float *y0, *y1, *z0, *z1; double diag, beta0, beta1, p0, p1, q0, q1, d; assert( r < numClamped ); numClamped--; // no need to swap and update the factored matrix when the last row and column are removed if ( r == numClamped ) { return; } y0 = (float *) _alloca16( numClamped * sizeof( float ) ); z0 = (float *) _alloca16( numClamped * sizeof( float ) ); y1 = (float *) _alloca16( numClamped * sizeof( float ) ); z1 = (float *) _alloca16( numClamped * sizeof( float ) ); // the row/column need to be subtracted from the factorization for ( i = 0; i < numClamped; i++ ) { y0[i] = -rowPtrs[i][r]; } memset( y1, 0, numClamped * sizeof( float ) ); y1[r] = 1.0f; memset( z0, 0, numClamped * sizeof( float ) ); z0[r] = 1.0f; for ( i = 0; i < numClamped; i++ ) { z1[i] = -rowPtrs[r][i]; } // swap the to be removed row/column with the last row/column Swap( r, numClamped ); // the swapped last row/column need to be added to the factorization for ( i = 0; i < numClamped; i++ ) { y0[i] += rowPtrs[i][r]; } for ( i = 0; i < numClamped; i++ ) { z1[i] += rowPtrs[r][i]; } z1[r] = 0.0f; // update the beginning of the to be updated row and column for ( i = 0; i < r; i++ ) { p0 = y0[i]; beta1 = z1[i] * diagonal[i]; clamped[i][r] += p0; for ( j = i+1; j < numClamped; j++ ) { z1[j] -= beta1 * clamped[i][j]; } for ( j = i+1; j < numClamped; j++ ) { y0[j] -= p0 * clamped[j][i]; } clamped[r][i] += beta1; } // update the lower right corner starting at r,r for ( i = r; i < numClamped; i++ ) { diag = clamped[i][i]; p0 = y0[i]; p1 = z0[i]; diag += p0 * p1; if ( diag == 0.0f ) { idLib::common->Printf( "idLCP_Square::RemoveClamped: updating factorization failed\n" ); return; } beta0 = p1 / diag; q0 = y1[i]; q1 = z1[i]; diag += q0 * q1; if ( diag == 0.0f ) { idLib::common->Printf( "idLCP_Square::RemoveClamped: updating factorization failed\n" ); return; } d = 1.0f / diag; beta1 = q1 * d; clamped[i][i] = diag; diagonal[i] = d; for ( j = i+1; j < numClamped; j++ ) { d = clamped[i][j]; d += p0 * z0[j]; z0[j] -= beta0 * d; d += q0 * z1[j]; z1[j] -= beta1 * d; clamped[i][j] = d; } for ( j = i+1; j < numClamped; j++ ) { d = clamped[j][i]; y0[j] -= p0 * d; d += beta0 * y0[j]; y1[j] -= q0 * d; d += beta1 * y1[j]; clamped[j][i] = d; } } return; } /* ============ idLCP_Square::CalcForceDelta modifies this->delta_f ============ */ ID_INLINE void idLCP_Square::CalcForceDelta( int d, float dir ) { int i; float *ptr; delta_f[d] = dir; if ( numClamped == 0 ) { return; } // get column d of matrix ptr = (float *) _alloca16( numClamped * sizeof( float ) ); for ( i = 0; i < numClamped; i++ ) { ptr[i] = rowPtrs[i][d]; } // solve force delta SolveClamped( delta_f, ptr ); // flip force delta based on direction if ( dir > 0.0f ) { ptr = delta_f.ToFloatPtr(); for ( i = 0; i < numClamped; i++ ) { ptr[i] = - ptr[i]; } } } /* ============ idLCP_Square::CalcAccelDelta modifies this->delta_a and uses this->delta_f ============ */ ID_INLINE void idLCP_Square::CalcAccelDelta( int d ) { int j; float dot; // only the not clamped variables, including the current variable, can have a change in acceleration for ( j = numClamped; j <= d; j++ ) { // only the clamped variables and the current variable have a force delta unequal zero SIMDProcessor->Dot( dot, rowPtrs[j], delta_f.ToFloatPtr(), numClamped ); delta_a[j] = dot + rowPtrs[j][d] * delta_f[d]; } } /* ============ idLCP_Square::ChangeForce modifies this->f and uses this->delta_f ============ */ ID_INLINE void idLCP_Square::ChangeForce( int d, float step ) { // only the clamped variables and current variable have a force delta unequal zero SIMDProcessor->MulAdd( f.ToFloatPtr(), step, delta_f.ToFloatPtr(), numClamped ); f[d] += step * delta_f[d]; } /* ============ idLCP_Square::ChangeAccel modifies this->a and uses this->delta_a ============ */ ID_INLINE void idLCP_Square::ChangeAccel( int d, float step ) { // only the not clamped variables, including the current variable, can have an acceleration unequal zero SIMDProcessor->MulAdd( a.ToFloatPtr() + numClamped, step, delta_a.ToFloatPtr() + numClamped, d - numClamped + 1 ); } /* ============ idLCP_Square::GetMaxStep ============ */ void idLCP_Square::GetMaxStep( int d, float dir, float &maxStep, int &limit, int &limitSide ) const { int i; float s; // default to a full step for the current variable if ( idMath::Fabs( delta_a[d] ) > LCP_DELTA_ACCEL_EPSILON ) { maxStep = -a[d] / delta_a[d]; } else { maxStep = 0.0f; } limit = d; limitSide = 0; // test the current variable if ( dir < 0.0f ) { if ( lo[d] != -idMath::INFINITY ) { s = ( lo[d] - f[d] ) / dir; if ( s < maxStep ) { maxStep = s; limitSide = -1; } } } else { if ( hi[d] != idMath::INFINITY ) { s = ( hi[d] - f[d] ) / dir; if ( s < maxStep ) { maxStep = s; limitSide = 1; } } } // test the clamped bounded variables for ( i = numUnbounded; i < numClamped; i++ ) { if ( delta_f[i] < -LCP_DELTA_FORCE_EPSILON ) { // if there is a low boundary if ( lo[i] != -idMath::INFINITY ) { s = ( lo[i] - f[i] ) / delta_f[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = -1; } } } else if ( delta_f[i] > LCP_DELTA_FORCE_EPSILON ) { // if there is a high boundary if ( hi[i] != idMath::INFINITY ) { s = ( hi[i] - f[i] ) / delta_f[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = 1; } } } } // test the not clamped bounded variables for ( i = numClamped; i < d; i++ ) { if ( side[i] == -1 ) { if ( delta_a[i] >= -LCP_DELTA_ACCEL_EPSILON ) { continue; } } else if ( side[i] == 1 ) { if ( delta_a[i] <= LCP_DELTA_ACCEL_EPSILON ) { continue; } } else { continue; } // ignore variables for which the force is not allowed to take any substantial value if ( lo[i] >= -LCP_BOUND_EPSILON && hi[i] <= LCP_BOUND_EPSILON ) { continue; } s = -a[i] / delta_a[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = 0; } } } /* ============ idLCP_Square::Solve ============ */ bool idLCP_Square::Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ) { int i, j, n, limit, limitSide, boxStartIndex; float dir, maxStep, dot, s; char *failed; // true when the matrix rows are 16 byte padded padded = ((o_m.GetNumRows()+3)&~3) == o_m.GetNumColumns(); assert( padded || o_m.GetNumRows() == o_m.GetNumColumns() ); assert( o_x.GetSize() == o_m.GetNumRows() ); assert( o_b.GetSize() == o_m.GetNumRows() ); assert( o_lo.GetSize() == o_m.GetNumRows() ); assert( o_hi.GetSize() == o_m.GetNumRows() ); // allocate memory for permuted input f.SetData( o_m.GetNumRows(), VECX_ALLOCA( o_m.GetNumRows() ) ); a.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) ); b.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) ); lo.SetData( o_lo.GetSize(), VECX_ALLOCA( o_lo.GetSize() ) ); hi.SetData( o_hi.GetSize(), VECX_ALLOCA( o_hi.GetSize() ) ); if ( o_boxIndex ) { boxIndex = (int *)_alloca16( o_x.GetSize() * sizeof( int ) ); memcpy( boxIndex, o_boxIndex, o_x.GetSize() * sizeof( int ) ); } else { boxIndex = NULL; } // we override the const on o_m here but on exit the matrix is unchanged m.SetData( o_m.GetNumRows(), o_m.GetNumColumns(), const_cast(o_m[0]) ); f.Zero(); a.Zero(); b = o_b; lo = o_lo; hi = o_hi; // pointers to the rows of m rowPtrs = (float **) _alloca16( m.GetNumRows() * sizeof( float * ) ); for ( i = 0; i < m.GetNumRows(); i++ ) { rowPtrs[i] = m[i]; } // tells if a variable is at the low boundary, high boundary or inbetween side = (int *) _alloca16( m.GetNumRows() * sizeof( int ) ); // index to keep track of the permutation permuted = (int *) _alloca16( m.GetNumRows() * sizeof( int ) ); for ( i = 0; i < m.GetNumRows(); i++ ) { permuted[i] = i; } // permute input so all unbounded variables come first numUnbounded = 0; for ( i = 0; i < m.GetNumRows(); i++ ) { if ( lo[i] == -idMath::INFINITY && hi[i] == idMath::INFINITY ) { if ( numUnbounded != i ) { Swap( numUnbounded, i ); } numUnbounded++; } } // permute input so all variables using the boxIndex come last boxStartIndex = m.GetNumRows(); if ( boxIndex ) { for ( i = m.GetNumRows() - 1; i >= numUnbounded; i-- ) { if ( boxIndex[i] >= 0 && ( lo[i] != -idMath::INFINITY || hi[i] != idMath::INFINITY ) ) { boxStartIndex--; if ( boxStartIndex != i ) { Swap( boxStartIndex, i ); } } } } // sub matrix for factorization clamped.SetData( m.GetNumRows(), m.GetNumColumns(), MATX_ALLOCA( m.GetNumRows() * m.GetNumColumns() ) ); diagonal.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); // all unbounded variables are clamped numClamped = numUnbounded; // if there are unbounded variables if ( numUnbounded ) { // factor and solve for unbounded variables if ( !FactorClamped() ) { idLib::common->Printf( "idLCP_Square::Solve: unbounded factorization failed\n" ); return false; } SolveClamped( f, b.ToFloatPtr() ); // if there are no bounded variables we are done if ( numUnbounded == m.GetNumRows() ) { o_x = f; // the vector is not permuted return true; } } #ifdef IGNORE_UNSATISFIABLE_VARIABLES int numIgnored = 0; #endif // allocate for delta force and delta acceleration delta_f.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); delta_a.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); // solve for bounded variables failed = NULL; for ( i = numUnbounded; i < m.GetNumRows(); i++ ) { // once we hit the box start index we can initialize the low and high boundaries of the variables using the box index if ( i == boxStartIndex ) { for ( j = 0; j < boxStartIndex; j++ ) { o_x[permuted[j]] = f[j]; } for ( j = boxStartIndex; j < m.GetNumRows(); j++ ) { s = o_x[boxIndex[j]]; if ( lo[j] != -idMath::INFINITY ) { lo[j] = - idMath::Fabs( lo[j] * s ); } if ( hi[j] != idMath::INFINITY ) { hi[j] = idMath::Fabs( hi[j] * s ); } } } // calculate acceleration for current variable SIMDProcessor->Dot( dot, rowPtrs[i], f.ToFloatPtr(), i ); a[i] = dot - b[i]; // if already at the low boundary if ( lo[i] >= -LCP_BOUND_EPSILON && a[i] >= -LCP_ACCEL_EPSILON ) { side[i] = -1; continue; } // if already at the high boundary if ( hi[i] <= LCP_BOUND_EPSILON && a[i] <= LCP_ACCEL_EPSILON ) { side[i] = 1; continue; } // if inside the clamped region if ( idMath::Fabs( a[i] ) <= LCP_ACCEL_EPSILON ) { side[i] = 0; AddClamped( i ); continue; } // drive the current variable into a valid region for ( n = 0; n < maxIterations; n++ ) { // direction to move if ( a[i] <= 0.0f ) { dir = 1.0f; } else { dir = -1.0f; } // calculate force delta CalcForceDelta( i, dir ); // calculate acceleration delta: delta_a = m * delta_f; CalcAccelDelta( i ); // maximum step we can take GetMaxStep( i, dir, maxStep, limit, limitSide ); if ( maxStep <= 0.0f ) { #ifdef IGNORE_UNSATISFIABLE_VARIABLES // ignore the current variable completely lo[i] = hi[i] = 0.0f; f[i] = 0.0f; side[i] = -1; numIgnored++; #else failed = va( "invalid step size %.4f", maxStep ); #endif break; } // change force ChangeForce( i, maxStep ); // change acceleration ChangeAccel( i, maxStep ); // clamp/unclamp the variable that limited this step side[limit] = limitSide; switch( limitSide ) { case 0: { a[limit] = 0.0f; AddClamped( limit ); break; } case -1: { f[limit] = lo[limit]; if ( limit != i ) { RemoveClamped( limit ); } break; } case 1: { f[limit] = hi[limit]; if ( limit != i ) { RemoveClamped( limit ); } break; } } // if the current variable limited the step we can continue with the next variable if ( limit == i ) { break; } } if ( n >= maxIterations ) { failed = va( "max iterations %d", maxIterations ); break; } if ( failed ) { break; } } #ifdef IGNORE_UNSATISFIABLE_VARIABLES if ( numIgnored ) { if ( lcp_showFailures.GetBool() ) { idLib::common->Printf( "idLCP_Symmetric::Solve: %d of %d bounded variables ignored\n", numIgnored, m.GetNumRows() - numUnbounded ); } } #endif // if failed clear remaining forces if ( failed ) { if ( lcp_showFailures.GetBool() ) { idLib::common->Printf( "idLCP_Square::Solve: %s (%d of %d bounded variables ignored)\n", failed, m.GetNumRows() - i, m.GetNumRows() - numUnbounded ); } for ( j = i; j < m.GetNumRows(); j++ ) { f[j] = 0.0f; } } #if defined(_DEBUG) && 0 if ( !failed ) { // test whether or not the solution satisfies the complementarity conditions for ( i = 0; i < m.GetNumRows(); i++ ) { a[i] = -b[i]; for ( j = 0; j < m.GetNumRows(); j++ ) { a[i] += rowPtrs[i][j] * f[j]; } if ( f[i] == lo[i] ) { if ( lo[i] != hi[i] && a[i] < -LCP_ACCEL_EPSILON ) { int bah1 = 1; } } else if ( f[i] == hi[i] ) { if ( lo[i] != hi[i] && a[i] > LCP_ACCEL_EPSILON ) { int bah2 = 1; } } else if ( f[i] < lo[i] || f[i] > hi[i] || idMath::Fabs( a[i] ) > 1.0f ) { int bah3 = 1; } } } #endif // unpermute result for ( i = 0; i < f.GetSize(); i++ ) { o_x[permuted[i]] = f[i]; } // unpermute original matrix for ( i = 0; i < m.GetNumRows(); i++ ) { for ( j = 0; j < m.GetNumRows(); j++ ) { if ( permuted[j] == i ) { break; } } if ( i != j ) { m.SwapColumns( i, j ); idSwap( permuted[i], permuted[j] ); } } return true; } //=============================================================== // M // idLCP_Symmetric MrE // E //=============================================================== class idLCP_Symmetric : public idLCP { public: virtual bool Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ); private: idMatX m; // original matrix idVecX b; // right hand side idVecX lo, hi; // low and high bounds idVecX f, a; // force and acceleration idVecX delta_f, delta_a; // delta force and delta acceleration idMatX clamped; // LDLt factored sub matrix for clamped variables idVecX diagonal; // reciprocal of diagonal of LDLt factored sub matrix for clamped variables idVecX solveCache1; // intermediate result cached in SolveClamped idVecX solveCache2; // " int numUnbounded; // number of unbounded variables int numClamped; // number of clamped variables int clampedChangeStart; // lowest row/column changed in the clamped matrix during an iteration float ** rowPtrs; // pointers to the rows of m int * boxIndex; // box index int * side; // tells if a variable is at the low boundary = -1, high boundary = 1 or inbetween = 0 int * permuted; // index to keep track of the permutation bool padded; // set to true if the rows of the initial matrix are 16 byte padded private: bool FactorClamped( void ); void SolveClamped( idVecX &x, const float *b ); void Swap( int i, int j ); void AddClamped( int r, bool useSolveCache ); void RemoveClamped( int r ); void CalcForceDelta( int d, float dir ); void CalcAccelDelta( int d ); void ChangeForce( int d, float step ); void ChangeAccel( int d, float step ); void GetMaxStep( int d, float dir, float &maxStep, int &limit, int &limitSide ) const; }; /* ============ idLCP_Symmetric::FactorClamped ============ */ bool idLCP_Symmetric::FactorClamped( void ) { clampedChangeStart = 0; for ( int i = 0; i < numClamped; i++ ) { memcpy( clamped[i], rowPtrs[i], numClamped * sizeof( float ) ); } return SIMDProcessor->MatX_LDLTFactor( clamped, diagonal, numClamped ); } /* ============ idLCP_Symmetric::SolveClamped ============ */ void idLCP_Symmetric::SolveClamped( idVecX &x, const float *b ) { // solve L SIMDProcessor->MatX_LowerTriangularSolve( clamped, solveCache1.ToFloatPtr(), b, numClamped, clampedChangeStart ); // solve D SIMDProcessor->Mul( solveCache2.ToFloatPtr(), solveCache1.ToFloatPtr(), diagonal.ToFloatPtr(), numClamped ); // solve Lt SIMDProcessor->MatX_LowerTriangularSolveTranspose( clamped, x.ToFloatPtr(), solveCache2.ToFloatPtr(), numClamped ); clampedChangeStart = numClamped; } /* ============ idLCP_Symmetric::Swap ============ */ void idLCP_Symmetric::Swap( int i, int j ) { if ( i == j ) { return; } idSwap( rowPtrs[i], rowPtrs[j] ); m.SwapColumns( i, j ); b.SwapElements( i, j ); lo.SwapElements( i, j ); hi.SwapElements( i, j ); a.SwapElements( i, j ); f.SwapElements( i, j ); if ( boxIndex ) { idSwap( boxIndex[i], boxIndex[j] ); } idSwap( side[i], side[j] ); idSwap( permuted[i], permuted[j] ); } /* ============ idLCP_Symmetric::AddClamped ============ */ void idLCP_Symmetric::AddClamped( int r, bool useSolveCache ) { float d, dot; assert( r >= numClamped ); if ( numClamped < clampedChangeStart ) { clampedChangeStart = numClamped; } // add a row at the bottom and a column at the right of the factored // matrix for the clamped variables Swap( numClamped, r ); // solve for v in L * v = rowPtr[numClamped] if ( useSolveCache ) { // the lower triangular solve was cached in SolveClamped called by CalcForceDelta memcpy( clamped[numClamped], solveCache2.ToFloatPtr(), numClamped * sizeof( float ) ); // calculate row dot product SIMDProcessor->Dot( dot, solveCache2.ToFloatPtr(), solveCache1.ToFloatPtr(), numClamped ); } else { float *v = (float *) _alloca16( numClamped * sizeof( float ) ); SIMDProcessor->MatX_LowerTriangularSolve( clamped, v, rowPtrs[numClamped], numClamped ); // add bottom row to L SIMDProcessor->Mul( clamped[numClamped], v, diagonal.ToFloatPtr(), numClamped ); // calculate row dot product SIMDProcessor->Dot( dot, clamped[numClamped], v, numClamped ); } // update diagonal[numClamped] d = rowPtrs[numClamped][numClamped] - dot; if ( d == 0.0f ) { idLib::common->Printf( "idLCP_Symmetric::AddClamped: updating factorization failed\n" ); numClamped++; return; } clamped[numClamped][numClamped] = d; diagonal[numClamped] = 1.0f / d; numClamped++; } /* ============ idLCP_Symmetric::RemoveClamped ============ */ void idLCP_Symmetric::RemoveClamped( int r ) { int i, j, n; float *addSub, *original, *v, *ptr, *v1, *v2, dot; double sum, diag, newDiag, invNewDiag, p1, p2, alpha1, alpha2, beta1, beta2; assert( r < numClamped ); if ( r < clampedChangeStart ) { clampedChangeStart = r; } numClamped--; // no need to swap and update the factored matrix when the last row and column are removed if ( r == numClamped ) { return; } // swap the to be removed row/column with the last row/column Swap( r, numClamped ); // update the factored matrix addSub = (float *) _alloca16( numClamped * sizeof( float ) ); if ( r == 0 ) { if ( numClamped == 1 ) { diag = rowPtrs[0][0]; if ( diag == 0.0f ) { idLib::common->Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" ); return; } clamped[0][0] = diag; diagonal[0] = 1.0f / diag; return; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) original = rowPtrs[numClamped]; ptr = rowPtrs[r]; addSub[0] = ptr[0] - original[numClamped]; for ( i = 1; i < numClamped; i++ ) { addSub[i] = ptr[i] - original[i]; } } else { v = (float *) _alloca16( numClamped * sizeof( float ) ); // solve for v in L * v = rowPtr[r] SIMDProcessor->MatX_LowerTriangularSolve( clamped, v, rowPtrs[r], r ); // update removed row SIMDProcessor->Mul( clamped[r], v, diagonal.ToFloatPtr(), r ); // if the last row/column of the matrix is updated if ( r == numClamped - 1 ) { // only calculate new diagonal SIMDProcessor->Dot( dot, clamped[r], v, r ); diag = rowPtrs[r][r] - dot; if ( diag == 0.0f ) { idLib::common->Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" ); return; } clamped[r][r] = diag; diagonal[r] = 1.0f / diag; return; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) for ( i = 0; i < r; i++ ) { v[i] = clamped[r][i] * clamped[i][i]; } for ( i = r; i < numClamped; i++ ) { if ( i == r ) { sum = clamped[r][r]; } else { sum = clamped[r][r] * clamped[i][r]; } ptr = clamped[i]; for ( j = 0; j < r; j++ ) { sum += ptr[j] * v[j]; } addSub[i] = rowPtrs[r][i] - sum; } } // add row/column to the lower right sub matrix starting at (r, r) v1 = (float *) _alloca16( numClamped * sizeof( float ) ); v2 = (float *) _alloca16( numClamped * sizeof( float ) ); diag = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * diag; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * diag; for ( i = r+1; i < numClamped; i++ ) { v1[i] = v2[i] = addSub[i] * diag; } alpha1 = 1.0f; alpha2 = -1.0f; // simultaneous update/downdate of the sub matrix starting at (r, r) n = clamped.GetNumColumns(); for ( i = r; i < numClamped; i++ ) { diag = clamped[i][i]; p1 = v1[i]; newDiag = diag + alpha1 * p1 * p1; if ( newDiag == 0.0f ) { idLib::common->Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" ); return; } alpha1 /= newDiag; beta1 = p1 * alpha1; alpha1 *= diag; diag = newDiag; p2 = v2[i]; newDiag = diag + alpha2 * p2 * p2; if ( newDiag == 0.0f ) { idLib::common->Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" ); return; } clamped[i][i] = newDiag; diagonal[i] = invNewDiag = 1.0f / newDiag; alpha2 *= invNewDiag; beta2 = p2 * alpha2; alpha2 *= diag; // update column below diagonal (i,i) ptr = clamped.ToFloatPtr() + i; for ( j = i+1; j < numClamped - 1; j += 2 ) { float sum0 = ptr[(j+0)*n]; float sum1 = ptr[(j+1)*n]; v1[j+0] -= p1 * sum0; v1[j+1] -= p1 * sum1; sum0 += beta1 * v1[j+0]; sum1 += beta1 * v1[j+1]; v2[j+0] -= p2 * sum0; v2[j+1] -= p2 * sum1; sum0 += beta2 * v2[j+0]; sum1 += beta2 * v2[j+1]; ptr[(j+0)*n] = sum0; ptr[(j+1)*n] = sum1; } for ( ; j < numClamped; j++ ) { sum = ptr[j*n]; v1[j] -= p1 * sum; sum += beta1 * v1[j]; v2[j] -= p2 * sum; sum += beta2 * v2[j]; ptr[j*n] = sum; } } } /* ============ idLCP_Symmetric::CalcForceDelta modifies this->delta_f ============ */ ID_INLINE void idLCP_Symmetric::CalcForceDelta( int d, float dir ) { int i; float *ptr; delta_f[d] = dir; if ( numClamped == 0 ) { return; } // solve force delta SolveClamped( delta_f, rowPtrs[d] ); // flip force delta based on direction if ( dir > 0.0f ) { ptr = delta_f.ToFloatPtr(); for ( i = 0; i < numClamped; i++ ) { ptr[i] = - ptr[i]; } } } /* ============ idLCP_Symmetric::CalcAccelDelta modifies this->delta_a and uses this->delta_f ============ */ ID_INLINE void idLCP_Symmetric::CalcAccelDelta( int d ) { int j; float dot; // only the not clamped variables, including the current variable, can have a change in acceleration for ( j = numClamped; j <= d; j++ ) { // only the clamped variables and the current variable have a force delta unequal zero SIMDProcessor->Dot( dot, rowPtrs[j], delta_f.ToFloatPtr(), numClamped ); delta_a[j] = dot + rowPtrs[j][d] * delta_f[d]; } } /* ============ idLCP_Symmetric::ChangeForce modifies this->f and uses this->delta_f ============ */ ID_INLINE void idLCP_Symmetric::ChangeForce( int d, float step ) { // only the clamped variables and current variable have a force delta unequal zero SIMDProcessor->MulAdd( f.ToFloatPtr(), step, delta_f.ToFloatPtr(), numClamped ); f[d] += step * delta_f[d]; } /* ============ idLCP_Symmetric::ChangeAccel modifies this->a and uses this->delta_a ============ */ ID_INLINE void idLCP_Symmetric::ChangeAccel( int d, float step ) { // only the not clamped variables, including the current variable, can have an acceleration unequal zero SIMDProcessor->MulAdd( a.ToFloatPtr() + numClamped, step, delta_a.ToFloatPtr() + numClamped, d - numClamped + 1 ); } /* ============ idLCP_Symmetric::GetMaxStep ============ */ void idLCP_Symmetric::GetMaxStep( int d, float dir, float &maxStep, int &limit, int &limitSide ) const { int i; float s; // default to a full step for the current variable if ( idMath::Fabs( delta_a[d] ) > LCP_DELTA_ACCEL_EPSILON ) { maxStep = -a[d] / delta_a[d]; } else { maxStep = 0.0f; } limit = d; limitSide = 0; // test the current variable if ( dir < 0.0f ) { if ( lo[d] != -idMath::INFINITY ) { s = ( lo[d] - f[d] ) / dir; if ( s < maxStep ) { maxStep = s; limitSide = -1; } } } else { if ( hi[d] != idMath::INFINITY ) { s = ( hi[d] - f[d] ) / dir; if ( s < maxStep ) { maxStep = s; limitSide = 1; } } } // test the clamped bounded variables for ( i = numUnbounded; i < numClamped; i++ ) { if ( delta_f[i] < -LCP_DELTA_FORCE_EPSILON ) { // if there is a low boundary if ( lo[i] != -idMath::INFINITY ) { s = ( lo[i] - f[i] ) / delta_f[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = -1; } } } else if ( delta_f[i] > LCP_DELTA_FORCE_EPSILON ) { // if there is a high boundary if ( hi[i] != idMath::INFINITY ) { s = ( hi[i] - f[i] ) / delta_f[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = 1; } } } } // test the not clamped bounded variables for ( i = numClamped; i < d; i++ ) { if ( side[i] == -1 ) { if ( delta_a[i] >= -LCP_DELTA_ACCEL_EPSILON ) { continue; } } else if ( side[i] == 1 ) { if ( delta_a[i] <= LCP_DELTA_ACCEL_EPSILON ) { continue; } } else { continue; } // ignore variables for which the force is not allowed to take any substantial value if ( lo[i] >= -LCP_BOUND_EPSILON && hi[i] <= LCP_BOUND_EPSILON ) { continue; } s = -a[i] / delta_a[i]; if ( s < maxStep ) { maxStep = s; limit = i; limitSide = 0; } } } /* ============ idLCP_Symmetric::Solve ============ */ bool idLCP_Symmetric::Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ) { int i, j, n, limit, limitSide, boxStartIndex; float dir, maxStep, dot, s; char *failed; // true when the matrix rows are 16 byte padded padded = ((o_m.GetNumRows()+3)&~3) == o_m.GetNumColumns(); assert( padded || o_m.GetNumRows() == o_m.GetNumColumns() ); assert( o_x.GetSize() == o_m.GetNumRows() ); assert( o_b.GetSize() == o_m.GetNumRows() ); assert( o_lo.GetSize() == o_m.GetNumRows() ); assert( o_hi.GetSize() == o_m.GetNumRows() ); // allocate memory for permuted input f.SetData( o_m.GetNumRows(), VECX_ALLOCA( o_m.GetNumRows() ) ); a.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) ); b.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) ); lo.SetData( o_lo.GetSize(), VECX_ALLOCA( o_lo.GetSize() ) ); hi.SetData( o_hi.GetSize(), VECX_ALLOCA( o_hi.GetSize() ) ); if ( o_boxIndex ) { boxIndex = (int *)_alloca16( o_x.GetSize() * sizeof( int ) ); memcpy( boxIndex, o_boxIndex, o_x.GetSize() * sizeof( int ) ); } else { boxIndex = NULL; } // we override the const on o_m here but on exit the matrix is unchanged m.SetData( o_m.GetNumRows(), o_m.GetNumColumns(), const_cast(o_m[0]) ); f.Zero(); a.Zero(); b = o_b; lo = o_lo; hi = o_hi; // pointers to the rows of m rowPtrs = (float **) _alloca16( m.GetNumRows() * sizeof( float * ) ); for ( i = 0; i < m.GetNumRows(); i++ ) { rowPtrs[i] = m[i]; } // tells if a variable is at the low boundary, high boundary or inbetween side = (int *) _alloca16( m.GetNumRows() * sizeof( int ) ); // index to keep track of the permutation permuted = (int *) _alloca16( m.GetNumRows() * sizeof( int ) ); for ( i = 0; i < m.GetNumRows(); i++ ) { permuted[i] = i; } // permute input so all unbounded variables come first numUnbounded = 0; for ( i = 0; i < m.GetNumRows(); i++ ) { if ( lo[i] == -idMath::INFINITY && hi[i] == idMath::INFINITY ) { if ( numUnbounded != i ) { Swap( numUnbounded, i ); } numUnbounded++; } } // permute input so all variables using the boxIndex come last boxStartIndex = m.GetNumRows(); if ( boxIndex ) { for ( i = m.GetNumRows() - 1; i >= numUnbounded; i-- ) { if ( boxIndex[i] >= 0 && ( lo[i] != -idMath::INFINITY || hi[i] != idMath::INFINITY ) ) { boxStartIndex--; if ( boxStartIndex != i ) { Swap( boxStartIndex, i ); } } } } // sub matrix for factorization clamped.SetData( m.GetNumRows(), m.GetNumColumns(), MATX_ALLOCA( m.GetNumRows() * m.GetNumColumns() ) ); diagonal.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); solveCache1.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); solveCache2.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); // all unbounded variables are clamped numClamped = numUnbounded; // if there are unbounded variables if ( numUnbounded ) { // factor and solve for unbounded variables if ( !FactorClamped() ) { idLib::common->Printf( "idLCP_Symmetric::Solve: unbounded factorization failed\n" ); return false; } SolveClamped( f, b.ToFloatPtr() ); // if there are no bounded variables we are done if ( numUnbounded == m.GetNumRows() ) { o_x = f; // the vector is not permuted return true; } } #ifdef IGNORE_UNSATISFIABLE_VARIABLES int numIgnored = 0; #endif // allocate for delta force and delta acceleration delta_f.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); delta_a.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) ); // solve for bounded variables failed = NULL; for ( i = numUnbounded; i < m.GetNumRows(); i++ ) { clampedChangeStart = 0; // once we hit the box start index we can initialize the low and high boundaries of the variables using the box index if ( i == boxStartIndex ) { for ( j = 0; j < boxStartIndex; j++ ) { o_x[permuted[j]] = f[j]; } for ( j = boxStartIndex; j < m.GetNumRows(); j++ ) { s = o_x[boxIndex[j]]; if ( lo[j] != -idMath::INFINITY ) { lo[j] = - idMath::Fabs( lo[j] * s ); } if ( hi[j] != idMath::INFINITY ) { hi[j] = idMath::Fabs( hi[j] * s ); } } } // calculate acceleration for current variable SIMDProcessor->Dot( dot, rowPtrs[i], f.ToFloatPtr(), i ); a[i] = dot - b[i]; // if already at the low boundary if ( lo[i] >= -LCP_BOUND_EPSILON && a[i] >= -LCP_ACCEL_EPSILON ) { side[i] = -1; continue; } // if already at the high boundary if ( hi[i] <= LCP_BOUND_EPSILON && a[i] <= LCP_ACCEL_EPSILON ) { side[i] = 1; continue; } // if inside the clamped region if ( idMath::Fabs( a[i] ) <= LCP_ACCEL_EPSILON ) { side[i] = 0; AddClamped( i, false ); continue; } // drive the current variable into a valid region for ( n = 0; n < maxIterations; n++ ) { // direction to move if ( a[i] <= 0.0f ) { dir = 1.0f; } else { dir = -1.0f; } // calculate force delta CalcForceDelta( i, dir ); // calculate acceleration delta: delta_a = m * delta_f; CalcAccelDelta( i ); // maximum step we can take GetMaxStep( i, dir, maxStep, limit, limitSide ); if ( maxStep <= 0.0f ) { #ifdef IGNORE_UNSATISFIABLE_VARIABLES // ignore the current variable completely lo[i] = hi[i] = 0.0f; f[i] = 0.0f; side[i] = -1; numIgnored++; #else failed = va( "invalid step size %.4f", maxStep ); #endif break; } // change force ChangeForce( i, maxStep ); // change acceleration ChangeAccel( i, maxStep ); // clamp/unclamp the variable that limited this step side[limit] = limitSide; switch( limitSide ) { case 0: { a[limit] = 0.0f; AddClamped( limit, ( limit == i ) ); break; } case -1: { f[limit] = lo[limit]; if ( limit != i ) { RemoveClamped( limit ); } break; } case 1: { f[limit] = hi[limit]; if ( limit != i ) { RemoveClamped( limit ); } break; } } // if the current variable limited the step we can continue with the next variable if ( limit == i ) { break; } } if ( n >= maxIterations ) { failed = va( "max iterations %d", maxIterations ); break; } if ( failed ) { break; } } #ifdef IGNORE_UNSATISFIABLE_VARIABLES if ( numIgnored ) { if ( lcp_showFailures.GetBool() ) { idLib::common->Printf( "idLCP_Symmetric::Solve: %d of %d bounded variables ignored\n", numIgnored, m.GetNumRows() - numUnbounded ); } } #endif // if failed clear remaining forces if ( failed ) { if ( lcp_showFailures.GetBool() ) { idLib::common->Printf( "idLCP_Symmetric::Solve: %s (%d of %d bounded variables ignored)\n", failed, m.GetNumRows() - i, m.GetNumRows() - numUnbounded ); } for ( j = i; j < m.GetNumRows(); j++ ) { f[j] = 0.0f; } } #if defined(_DEBUG) && 0 if ( !failed ) { // test whether or not the solution satisfies the complementarity conditions for ( i = 0; i < m.GetNumRows(); i++ ) { a[i] = -b[i]; for ( j = 0; j < m.GetNumRows(); j++ ) { a[i] += rowPtrs[i][j] * f[j]; } if ( f[i] == lo[i] ) { if ( lo[i] != hi[i] && a[i] < -LCP_ACCEL_EPSILON ) { int bah1 = 1; } } else if ( f[i] == hi[i] ) { if ( lo[i] != hi[i] && a[i] > LCP_ACCEL_EPSILON ) { int bah2 = 1; } } else if ( f[i] < lo[i] || f[i] > hi[i] || idMath::Fabs( a[i] ) > 1.0f ) { int bah3 = 1; } } } #endif // unpermute result for ( i = 0; i < f.GetSize(); i++ ) { o_x[permuted[i]] = f[i]; } // unpermute original matrix for ( i = 0; i < m.GetNumRows(); i++ ) { for ( j = 0; j < m.GetNumRows(); j++ ) { if ( permuted[j] == i ) { break; } } if ( i != j ) { m.SwapColumns( i, j ); idSwap( permuted[i], permuted[j] ); } } return true; } //=============================================================== // // idLCP // //=============================================================== /* ============ idLCP::AllocSquare ============ */ idLCP *idLCP::AllocSquare( void ) { idLCP *lcp = new idLCP_Square; lcp->SetMaxIterations( 32 ); return lcp; } /* ============ idLCP::AllocSymmetric ============ */ idLCP *idLCP::AllocSymmetric( void ) { idLCP *lcp = new idLCP_Symmetric; lcp->SetMaxIterations( 32 ); return lcp; } /* ============ idLCP::~idLCP ============ */ idLCP::~idLCP( void ) { } /* ============ idLCP::SetMaxIterations ============ */ void idLCP::SetMaxIterations( int max ) { maxIterations = max; } /* ============ idLCP::GetMaxIterations ============ */ int idLCP::GetMaxIterations( void ) { return maxIterations; }