/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __MATH_EXTRAPOLATE_H__ #define __MATH_EXTRAPOLATE_H__ #include "idlib/math/Math.h" /* ============================================================================================== Extrapolation ============================================================================================== */ typedef enum { EXTRAPOLATION_NONE = 0x01, // no extrapolation, covered distance = duration * 0.001 * ( baseSpeed ) EXTRAPOLATION_LINEAR = 0x02, // linear extrapolation, covered distance = duration * 0.001 * ( baseSpeed + speed ) EXTRAPOLATION_ACCELLINEAR = 0x04, // linear acceleration, covered distance = duration * 0.001 * ( baseSpeed + 0.5 * speed ) EXTRAPOLATION_DECELLINEAR = 0x08, // linear deceleration, covered distance = duration * 0.001 * ( baseSpeed + 0.5 * speed ) EXTRAPOLATION_ACCELSINE = 0x10, // sinusoidal acceleration, covered distance = duration * 0.001 * ( baseSpeed + sqrt( 0.5 ) * speed ) EXTRAPOLATION_DECELSINE = 0x20, // sinusoidal deceleration, covered distance = duration * 0.001 * ( baseSpeed + sqrt( 0.5 ) * speed ) EXTRAPOLATION_NOSTOP = 0x40 // do not stop at startTime + duration } extrapolation_t; template< class type > class idExtrapolate { public: idExtrapolate(); void Init( const float startTime, const float duration, const type &startValue, const type &baseSpeed, const type &speed, const extrapolation_t extrapolationType ); type GetCurrentValue( float time ) const; type GetCurrentSpeed( float time ) const; bool IsDone( float time ) const { return ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && time >= startTime + duration ); } void SetStartTime( float time ) { startTime = time; currentTime = -1; } float GetStartTime( void ) const { return startTime; } float GetEndTime( void ) const { return ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && duration > 0 ) ? startTime + duration : 0; } float GetDuration( void ) const { return duration; } void SetStartValue( const type &value ) { startValue = value; currentTime = -1; } const type & GetStartValue( void ) const { return startValue; } const type & GetBaseSpeed( void ) const { return baseSpeed; } const type & GetSpeed( void ) const { return speed; } extrapolation_t GetExtrapolationType( void ) const { return extrapolationType; } private: extrapolation_t extrapolationType; float startTime; float duration; type startValue; type baseSpeed; type speed; mutable float currentTime; mutable type currentValue; }; /* ==================== idExtrapolate::idExtrapolate ==================== */ template< class type > ID_INLINE idExtrapolate::idExtrapolate() { extrapolationType = EXTRAPOLATION_NONE; startTime = duration = 0.0f; memset( &startValue, 0, sizeof( startValue ) ); memset( &baseSpeed, 0, sizeof( baseSpeed ) ); memset( &speed, 0, sizeof( speed ) ); currentTime = -1; currentValue = startValue; } /* ==================== idExtrapolate::Init ==================== */ template< class type > ID_INLINE void idExtrapolate::Init( const float startTime, const float duration, const type &startValue, const type &baseSpeed, const type &speed, const extrapolation_t extrapolationType ) { this->extrapolationType = extrapolationType; this->startTime = startTime; this->duration = duration; this->startValue = startValue; this->baseSpeed = baseSpeed; this->speed = speed; currentTime = -1; currentValue = startValue; } /* ==================== idExtrapolate::GetCurrentValue ==================== */ template< class type > ID_INLINE type idExtrapolate::GetCurrentValue( float time ) const { float deltaTime, s; if ( time == currentTime ) { return currentValue; } currentTime = time; if ( time < startTime ) { return startValue; } if ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && ( time > startTime + duration ) ) { time = startTime + duration; } switch( extrapolationType & ~EXTRAPOLATION_NOSTOP ) { case EXTRAPOLATION_NONE: { deltaTime = ( time - startTime ) * 0.001f; currentValue = startValue + deltaTime * baseSpeed; break; } case EXTRAPOLATION_LINEAR: { deltaTime = ( time - startTime ) * 0.001f; currentValue = startValue + deltaTime * ( baseSpeed + speed ); break; } case EXTRAPOLATION_ACCELLINEAR: { if ( !duration ) { currentValue = startValue; } else { deltaTime = ( time - startTime ) / duration; s = ( 0.5f * deltaTime * deltaTime ) * ( duration * 0.001f ); currentValue = startValue + deltaTime * baseSpeed + s * speed; } break; } case EXTRAPOLATION_DECELLINEAR: { if ( !duration ) { currentValue = startValue; } else { deltaTime = ( time - startTime ) / duration; s = ( deltaTime - ( 0.5f * deltaTime * deltaTime ) ) * ( duration * 0.001f ); currentValue = startValue + deltaTime * baseSpeed + s * speed; } break; } case EXTRAPOLATION_ACCELSINE: { if ( !duration ) { currentValue = startValue; } else { deltaTime = ( time - startTime ) / duration; s = ( 1.0f - idMath::Cos( deltaTime * idMath::HALF_PI ) ) * duration * 0.001f * idMath::SQRT_1OVER2; currentValue = startValue + deltaTime * baseSpeed + s * speed; } break; } case EXTRAPOLATION_DECELSINE: { if ( !duration ) { currentValue = startValue; } else { deltaTime = ( time - startTime ) / duration; s = idMath::Sin( deltaTime * idMath::HALF_PI ) * duration * 0.001f * idMath::SQRT_1OVER2; currentValue = startValue + deltaTime * baseSpeed + s * speed; } break; } } return currentValue; } /* ==================== idExtrapolate::GetCurrentSpeed ==================== */ template< class type > ID_INLINE type idExtrapolate::GetCurrentSpeed( float time ) const { float deltaTime, s; if ( time < startTime || !duration ) { return ( startValue - startValue ); } if ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && ( time > startTime + duration ) ) { return ( startValue - startValue ); } switch( extrapolationType & ~EXTRAPOLATION_NOSTOP ) { case EXTRAPOLATION_NONE: { return baseSpeed; } case EXTRAPOLATION_LINEAR: { return baseSpeed + speed; } case EXTRAPOLATION_ACCELLINEAR: { deltaTime = ( time - startTime ) / duration; s = deltaTime; return baseSpeed + s * speed; } case EXTRAPOLATION_DECELLINEAR: { deltaTime = ( time - startTime ) / duration; s = 1.0f - deltaTime; return baseSpeed + s * speed; } case EXTRAPOLATION_ACCELSINE: { deltaTime = ( time - startTime ) / duration; s = idMath::Sin( deltaTime * idMath::HALF_PI ); return baseSpeed + s * speed; } case EXTRAPOLATION_DECELSINE: { deltaTime = ( time - startTime ) / duration; s = idMath::Cos( deltaTime * idMath::HALF_PI ); return baseSpeed + s * speed; } default: { return baseSpeed; } } } #endif /* !__MATH_EXTRAPOLATE_H__ */