/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __WINDING_H__ #define __WINDING_H__ #include "idlib/math/Vector.h" #include "idlib/bv/Bounds.h" /* =============================================================================== A winding is an arbitrary convex polygon defined by an array of points. =============================================================================== */ class idWinding { public: idWinding( void ); explicit idWinding( const int n ); // allocate for n points explicit idWinding( const idVec3 *verts, const int n ); // winding from points explicit idWinding( const idVec3 &normal, const float dist ); // base winding for plane explicit idWinding( const idPlane &plane ); // base winding for plane explicit idWinding( const idWinding &winding ); virtual ~idWinding( void ); idWinding & operator=( const idWinding &winding ); const idVec5 & operator[]( const int index ) const; idVec5 & operator[]( const int index ); // add a point to the end of the winding point array idWinding & operator+=( const idVec3 &v ); idWinding & operator+=( const idVec5 &v ); void AddPoint( const idVec3 &v ); void AddPoint( const idVec5 &v ); // number of points on winding int GetNumPoints( void ) const; void SetNumPoints( int n ); virtual void Clear( void ); // huge winding for plane, the points go counter clockwise when facing the front of the plane void BaseForPlane( const idVec3 &normal, const float dist ); void BaseForPlane( const idPlane &plane ); // splits the winding into a front and back winding, the winding itself stays unchanged // returns a SIDE_? int Split( const idPlane &plane, const float epsilon, idWinding **front, idWinding **back ) const; // returns the winding fragment at the front of the clipping plane, // if there is nothing at the front the winding itself is destroyed and NULL is returned idWinding * Clip( const idPlane &plane, const float epsilon = ON_EPSILON, const bool keepOn = false ); // cuts off the part at the back side of the plane, returns true if some part was at the front // if there is nothing at the front the number of points is set to zero bool ClipInPlace( const idPlane &plane, const float epsilon = ON_EPSILON, const bool keepOn = false ); // returns a copy of the winding idWinding * Copy( void ) const; idWinding * Reverse( void ) const; void ReverseSelf( void ); void RemoveEqualPoints( const float epsilon = ON_EPSILON ); void RemoveColinearPoints( const idVec3 &normal, const float epsilon = ON_EPSILON ); void RemovePoint( int point ); void InsertPoint( const idVec3 &point, int spot ); bool InsertPointIfOnEdge( const idVec3 &point, const idPlane &plane, const float epsilon = ON_EPSILON ); // add a winding to the convex hull void AddToConvexHull( const idWinding *winding, const idVec3 &normal, const float epsilon = ON_EPSILON ); // add a point to the convex hull void AddToConvexHull( const idVec3 &point, const idVec3 &normal, const float epsilon = ON_EPSILON ); // tries to merge 'this' with the given winding, returns NULL if merge fails, both 'this' and 'w' stay intact // 'keep' tells if the contacting points should stay even if they create colinear edges idWinding * TryMerge( const idWinding &w, const idVec3 &normal, int keep = false ) const; // check whether the winding is valid or not bool Check( bool print = true ) const; float GetArea( void ) const; idVec3 GetCenter( void ) const; float GetRadius( const idVec3 ¢er ) const; void GetPlane( idVec3 &normal, float &dist ) const; void GetPlane( idPlane &plane ) const; void GetBounds( idBounds &bounds ) const; bool IsTiny( void ) const; bool IsHuge( void ) const; // base winding for a plane is typically huge void Print( void ) const; float PlaneDistance( const idPlane &plane ) const; int PlaneSide( const idPlane &plane, const float epsilon = ON_EPSILON ) const; bool PlanesConcave( const idWinding &w2, const idVec3 &normal1, const idVec3 &normal2, float dist1, float dist2 ) const; bool PointInside( const idVec3 &normal, const idVec3 &point, const float epsilon ) const; // returns true if the line or ray intersects the winding bool LineIntersection( const idPlane &windingPlane, const idVec3 &start, const idVec3 &end, bool backFaceCull = false ) const; // intersection point is start + dir * scale bool RayIntersection( const idPlane &windingPlane, const idVec3 &start, const idVec3 &dir, float &scale, bool backFaceCull = false ) const; static float TriangleArea( const idVec3 &a, const idVec3 &b, const idVec3 &c ); protected: int numPoints; // number of points idVec5 * p; // pointer to point data int allocedSize; bool EnsureAlloced( int n, bool keep = false ); virtual bool ReAllocate( int n, bool keep = false ); }; ID_INLINE idWinding::idWinding( void ) { numPoints = allocedSize = 0; p = NULL; } ID_INLINE idWinding::idWinding( int n ) { numPoints = allocedSize = 0; p = NULL; EnsureAlloced( n ); } ID_INLINE idWinding::idWinding( const idVec3 *verts, const int n ) { int i; numPoints = allocedSize = 0; p = NULL; if ( !EnsureAlloced( n ) ) { numPoints = 0; return; } for ( i = 0; i < n; i++ ) { p[i].ToVec3() = verts[i]; p[i].s = p[i].t = 0.0f; } numPoints = n; } ID_INLINE idWinding::idWinding( const idVec3 &normal, const float dist ) { numPoints = allocedSize = 0; p = NULL; BaseForPlane( normal, dist ); } ID_INLINE idWinding::idWinding( const idPlane &plane ) { numPoints = allocedSize = 0; p = NULL; BaseForPlane( plane ); } ID_INLINE idWinding::idWinding( const idWinding &winding ) { int i; if ( !EnsureAlloced( winding.GetNumPoints() ) ) { numPoints = 0; return; } for ( i = 0; i < winding.GetNumPoints(); i++ ) { p[i] = winding[i]; } numPoints = winding.GetNumPoints(); } ID_INLINE idWinding::~idWinding( void ) { delete[] p; p = NULL; } ID_INLINE idWinding &idWinding::operator=( const idWinding &winding ) { int i; if ( !EnsureAlloced( winding.numPoints ) ) { numPoints = 0; return *this; } for ( i = 0; i < winding.numPoints; i++ ) { p[i] = winding.p[i]; } numPoints = winding.numPoints; return *this; } ID_INLINE const idVec5 &idWinding::operator[]( const int index ) const { //assert( index >= 0 && index < numPoints ); return p[ index ]; } ID_INLINE idVec5 &idWinding::operator[]( const int index ) { //assert( index >= 0 && index < numPoints ); return p[ index ]; } ID_INLINE idWinding &idWinding::operator+=( const idVec3 &v ) { AddPoint( v ); return *this; } ID_INLINE idWinding &idWinding::operator+=( const idVec5 &v ) { AddPoint( v ); return *this; } ID_INLINE void idWinding::AddPoint( const idVec3 &v ) { if ( !EnsureAlloced(numPoints+1, true) ) { return; } p[numPoints] = v; numPoints++; } ID_INLINE void idWinding::AddPoint( const idVec5 &v ) { if ( !EnsureAlloced(numPoints+1, true) ) { return; } p[numPoints] = v; numPoints++; } ID_INLINE int idWinding::GetNumPoints( void ) const { return numPoints; } ID_INLINE void idWinding::SetNumPoints( int n ) { if ( !EnsureAlloced( n, true ) ) { return; } numPoints = n; } ID_INLINE void idWinding::Clear( void ) { numPoints = 0; delete[] p; p = NULL; } ID_INLINE void idWinding::BaseForPlane( const idPlane &plane ) { BaseForPlane( plane.Normal(), plane.Dist() ); } ID_INLINE bool idWinding::EnsureAlloced( int n, bool keep ) { if ( n > allocedSize ) { return ReAllocate( n, keep ); } return true; } /* =============================================================================== idFixedWinding is a fixed buffer size winding not using memory allocations. When an operation would overflow the fixed buffer a warning is printed and the operation is safely cancelled. =============================================================================== */ #define MAX_POINTS_ON_WINDING 64 class idFixedWinding : public idWinding { public: idFixedWinding( void ); explicit idFixedWinding( const int n ); explicit idFixedWinding( const idVec3 *verts, const int n ); explicit idFixedWinding( const idVec3 &normal, const float dist ); explicit idFixedWinding( const idPlane &plane ); explicit idFixedWinding( const idWinding &winding ); explicit idFixedWinding( const idFixedWinding &winding ); virtual ~idFixedWinding( void ); idFixedWinding &operator=( const idWinding &winding ); virtual void Clear( void ); // splits the winding in a back and front part, 'this' becomes the front part // returns a SIDE_? int Split( idFixedWinding *back, const idPlane &plane, const float epsilon = ON_EPSILON ); protected: idVec5 data[MAX_POINTS_ON_WINDING]; // point data virtual bool ReAllocate( int n, bool keep = false ); }; ID_INLINE idFixedWinding::idFixedWinding( void ) { numPoints = 0; p = data; allocedSize = MAX_POINTS_ON_WINDING; } ID_INLINE idFixedWinding::idFixedWinding( int n ) { numPoints = 0; p = data; allocedSize = MAX_POINTS_ON_WINDING; } ID_INLINE idFixedWinding::idFixedWinding( const idVec3 *verts, const int n ) { int i; numPoints = 0; p = data; allocedSize = MAX_POINTS_ON_WINDING; if ( !EnsureAlloced( n ) ) { numPoints = 0; return; } for ( i = 0; i < n; i++ ) { p[i].ToVec3() = verts[i]; p[i].s = p[i].t = 0; } numPoints = n; } ID_INLINE idFixedWinding::idFixedWinding( const idVec3 &normal, const float dist ) { numPoints = 0; p = data; allocedSize = MAX_POINTS_ON_WINDING; BaseForPlane( normal, dist ); } ID_INLINE idFixedWinding::idFixedWinding( const idPlane &plane ) { numPoints = 0; p = data; allocedSize = MAX_POINTS_ON_WINDING; BaseForPlane( plane ); } ID_INLINE idFixedWinding::idFixedWinding( const idWinding &winding ) { int i; p = data; allocedSize = MAX_POINTS_ON_WINDING; if ( !EnsureAlloced( winding.GetNumPoints() ) ) { numPoints = 0; return; } for ( i = 0; i < winding.GetNumPoints(); i++ ) { p[i] = winding[i]; } numPoints = winding.GetNumPoints(); } ID_INLINE idFixedWinding::idFixedWinding( const idFixedWinding &winding ) { int i; p = data; allocedSize = MAX_POINTS_ON_WINDING; if ( !EnsureAlloced( winding.GetNumPoints() ) ) { numPoints = 0; return; } for ( i = 0; i < winding.GetNumPoints(); i++ ) { p[i] = winding[i]; } numPoints = winding.GetNumPoints(); } ID_INLINE idFixedWinding::~idFixedWinding( void ) { p = NULL; // otherwise it tries to free the fixed buffer } ID_INLINE idFixedWinding &idFixedWinding::operator=( const idWinding &winding ) { int i; if ( !EnsureAlloced( winding.GetNumPoints() ) ) { numPoints = 0; return *this; } for ( i = 0; i < winding.GetNumPoints(); i++ ) { p[i] = winding[i]; } numPoints = winding.GetNumPoints(); return *this; } ID_INLINE void idFixedWinding::Clear( void ) { numPoints = 0; } #endif /* !__WINDING_H__ */