gmqcc/test.c
2012-11-25 15:39:49 +01:00

1059 lines
33 KiB
C

/*
* Copyright (C) 2012
* Dale Weiler
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "gmqcc.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
bool opts_memchk = false;
bool opts_debug = false;
char *task_bins[] = {
"./gmqcc",
"./qcvm"
};
/*
* TODO: Windows version
* this implements a unique bi-directional popen-like function that
* allows reading data from both stdout and stderr. And writing to
* stdin :)
*
* Example of use:
* FILE *handles[3] = task_popen("ls", "-l", "r");
* if (!handles) { perror("failed to open stdin/stdout/stderr to ls");
* // handles[0] = stdin
* // handles[1] = stdout
* // handles[2] = stderr
*
* task_pclose(handles); // to close
*/
#ifndef _WIN32
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
typedef struct {
FILE *handles[3];
int pipes [3];
int stderr_fd;
int stdout_fd;
int pid;
} popen_t;
FILE ** task_popen(const char *command, const char *mode) {
int inhandle [2];
int outhandle [2];
int errhandle [2];
int trypipe;
popen_t *data = mem_a(sizeof(popen_t));
/*
* Parse the command now into a list for execv, this is a pain
* in the ass.
*/
char *line = (char*)command;
char **argv = NULL;
{
while (*line != '\0') {
while (*line == ' ' || *line == '\t' || *line == '\n')
*line++ = '\0';
vec_push(argv, line);
while (*line != '\0' && *line != ' ' &&
*line != '\t' && *line != '\n') line++;
}
vec_push(argv, '\0');
}
if ((trypipe = pipe(inhandle)) < 0) goto task_popen_error_0;
if ((trypipe = pipe(outhandle)) < 0) goto task_popen_error_1;
if ((trypipe = pipe(errhandle)) < 0) goto task_popen_error_2;
if ((data->pid = fork()) > 0) {
/* parent */
close(inhandle [0]);
close(outhandle [1]);
close(errhandle [1]);
data->pipes [0] = inhandle [1];
data->pipes [1] = outhandle[0];
data->pipes [2] = errhandle[0];
data->handles[0] = fdopen(inhandle [1], "w");
data->handles[1] = fdopen(outhandle[0], mode);
data->handles[2] = fdopen(errhandle[0], mode);
/* sigh */
if (argv)
vec_free(argv);
return data->handles;
} else if (data->pid == 0) {
/* child */
close(inhandle [1]);
close(outhandle[0]);
close(errhandle[0]);
/* see piping documentation for this sillyness :P */
close(0), dup(inhandle [0]);
close(1), dup(outhandle[1]);
close(2), dup(errhandle[1]);
execvp(*argv, argv);
exit(1);
} else {
/* fork failed */
goto task_popen_error_3;
}
if (argv)
vec_free(argv);
return data->handles;
task_popen_error_3: close(errhandle[0]), close(errhandle[1]);
task_popen_error_2: close(outhandle[0]), close(outhandle[1]);
task_popen_error_1: close(inhandle [0]), close(inhandle [1]);
task_popen_error_0:
if (argv)
vec_free(argv);
return NULL;
}
int task_pclose(FILE **handles) {
popen_t *data = (popen_t*)handles;
int status = 0;
close(data->pipes[0]); /* stdin */
close(data->pipes[1]); /* stdout */
close(data->pipes[2]); /* stderr */
waitpid(data->pid, &status, 0);
mem_d(data);
return status;
}
#else
#endif
#define TASK_COMPILE 0
#define TASK_EXECUTE 1
/*
* Task template system:
* templates are rules for a specific test, used to create a "task" that
* is executed with those set of rules (arguments, and what not). Tests
* that don't have a template with them cannot become tasks, since without
* the information for that test there is no way to properly "test" them.
* Rules for these templates are described in a template file, using a
* task template language.
*
* The language is a basic finite statemachine, top-down single-line
* description language.
*
* The languge is composed entierly of "tags" which describe a string of
* text for a task. Think of it much like a configuration file. Except
* it's been designed to allow flexibility and future support for prodecual
* semantics.
*
* The following "tags" are suported by the language
*
* D:
* Used to set a description of the current test, this must be
* provided, this tag is NOT optional.
*
* F:
* Used to set a failure message, this message will be displayed
* if the test fails, this tag is optional
*
* S:
* Used to set a success message, this message will be displayed
* if the test succeeds, this tag is optional.
*
* T:
* Used to set the procedure for the given task, there are two
* options for this:
* -compile
* This simply performs compilation only
* -execute
* This will perform compilation and execution
*
* This must be provided, this tag is NOT optional.
*
* C:
* Used to set the compilation flags for the given task, this
* must be provided, this tag is NOT optional.
*
* E:
* Used to set the execution flags for the given task. This tag
* must be provided if T == -execute, otherwise it's erroneous
* as compilation only takes place.
*
* M:
* Used to describe a string of text that should be matched from
* the output of executing the task. If this doesn't match the
* task fails. This tag must be provided if T == -execute, otherwise
* it's erroneous as compilation only takes place.
*
* I:
* Used to specify the INPUT source file to operate on, this must be
* provided, this tag is NOT optional
*
*
* Notes:
* These tags have one-time use, using them more than once will result
* in template compilation errors.
*
* Lines beginning with # or // in the template file are comments and
* are ignored by the template parser.
*
* Whitespace is optional, with exception to the colon ':' between the
* tag and it's assignment value/
*
* The template compiler will detect erronrous tags (optional tags
* that need not be set), as well as missing tags, and error accordingly
* this will result in the task failing.
*/
typedef struct {
char *description;
char *failuremessage;
char *successmessage;
char *compileflags;
char *executeflags;
char *proceduretype;
char *sourcefile;
char *tempfilename;
char **comparematch;
} task_template_t;
/*
* This is very much like a compiler code generator :-). This generates
* a value from some data observed from the compiler.
*/
bool task_template_generate(task_template_t *template, char tag, const char *file, size_t line, const char *value) {
char **destval = NULL;
if (!template)
return false;
switch(tag) {
case 'D': destval = &template->description; break;
case 'F': destval = &template->failuremessage; break;
case 'S': destval = &template->successmessage; break;
case 'T': destval = &template->proceduretype; break;
case 'C': destval = &template->compileflags; break;
case 'E': destval = &template->executeflags; break;
case 'I': destval = &template->sourcefile; break;
default:
con_printmsg(LVL_ERROR, __FILE__, __LINE__, "internal error",
"invalid tag `%c:` during code generation\n",
tag
);
return false;
}
/*
* Ensure if for the given tag, there already exists a
* assigned value.
*/
if (*destval) {
con_printmsg(LVL_ERROR, file, line, "compile error",
"tag `%c:` already assigned value: %s\n",
tag, *destval
);
return false;
}
/*
* Strip any whitespace that might exist in the value for assignments
* like "D: foo"
*/
if (value && *value && (*value == ' ' || *value == '\t'))
value++;
/*
* Value will contain a newline character at the end, we need to strip
* this otherwise kaboom, seriously, kaboom :P
*/
*strrchr(value, '\n')='\0';
/*
* Now allocate and set the actual value for the specific tag. Which
* was properly selected and can be accessed with *destval.
*/
*destval = util_strdup(value);
return true;
}
bool task_template_parse(const char *file, task_template_t *template, FILE *fp) {
char *data = NULL;
char *back = NULL;
size_t size = 0;
size_t line = 1;
if (!template)
return false;
/* top down parsing */
while (util_getline(&back, &size, fp) != EOF) {
/* skip whitespace */
data = back;
if (*data && (*data == ' ' || *data == '\t'))
data++;
switch (*data) {
/*
* Handle comments inside task template files. We're strict
* about the language for fun :-)
*/
case '/':
if (data[1] != '/') {
con_printmsg(LVL_ERROR, file, line, "template parse error",
"invalid character `/`, perhaps you meant `//` ?");
mem_d(back);
return false;
}
case '#':
break;
/*
* Empty newlines are acceptable as well, so we handle that here
* despite being just odd since there should't be that many
* empty lines to begin with.
*/
case '\r':
case '\n':
break;
/*
* Now begin the actual "tag" stuff. This works as you expect
* it to.
*/
case 'D':
case 'F':
case 'S':
case 'T':
case 'C':
case 'E':
case 'I':
if (data[1] != ':') {
con_printmsg(LVL_ERROR, file, line, "template parse error",
"expected `:` after `%c`",
*data
);
goto failure;
}
if (!task_template_generate(template, *data, file, line, &data[3])) {
con_printmsg(LVL_ERROR, file, line, "template compile error",
"failed to generate for given task\n"
);
goto failure;
}
break;
/*
* Match requires it's own system since we allow multiple M's
* for multi-line matching.
*/
case 'M':
{
char *value = &data[3];
if (data[1] != ':') {
con_printmsg(LVL_ERROR, file, line, "template parse error",
"expected `:` after `%c`",
*data
);
goto failure;
}
if (value && *value && (*value == ' ' || *value == '\t'))
value++;
/*
* Value will contain a newline character at the end, we need to strip
* this otherwise kaboom, seriously, kaboom :P
*/
*strrchr(value, '\n')='\0';
vec_push(template->comparematch, util_strdup(value));
break;
}
default:
con_printmsg(LVL_ERROR, file, line, "template parse error",
"invalid tag `%c`", *data
);
goto failure;
/* no break required */
}
/* update line and free old sata */
line++;
mem_d(back);
back = NULL;
}
if (back)
mem_d(back);
return true;
failure:
if (back)
mem_d (back);
return false;
}
/*
* Nullifies the template data: used during initialization of a new
* template and free.
*/
void task_template_nullify(task_template_t *template) {
if (!template)
return;
template->description = NULL;
template->failuremessage = NULL;
template->successmessage = NULL;
template->proceduretype = NULL;
template->compileflags = NULL;
template->executeflags = NULL;
template->comparematch = NULL;
template->sourcefile = NULL;
template->tempfilename = NULL;
}
task_template_t *task_template_compile(const char *file, const char *dir) {
/* a page should be enough */
char fullfile[4096];
FILE *tempfile = NULL;
task_template_t *template = NULL;
memset (fullfile, 0, sizeof(fullfile));
snprintf(fullfile, sizeof(fullfile), "%s/%s", dir, file);
tempfile = fopen(fullfile, "r");
template = mem_a(sizeof(task_template_t));
task_template_nullify(template);
/*
* Esnure the file even exists for the task, this is pretty useless
* to even do.
*/
if (!tempfile) {
con_err("template file: %s does not exist or invalid permissions\n",
file
);
goto failure;
}
if (!task_template_parse(file, template, tempfile)) {
con_err("template parse error: error during parsing\n");
goto failure;
}
/*
* Regardless procedure type, the following tags must exist:
* D
* T
* C
* I
*/
if (!template->description) {
con_err("template compile error: %s missing `D:` tag\n", file);
goto failure;
}
if (!template->proceduretype) {
con_err("template compile error: %s missing `T:` tag\n", file);
goto failure;
}
if (!template->compileflags) {
con_err("template compile error: %s missing `C:` tag\n", file);
goto failure;
}
if (!template->sourcefile) {
con_err("template compile error: %s missing `I:` tag\n", file);
goto failure;
}
/*
* Now lets compile the template, compilation is really just
* the process of validating the input.
*/
if (!strcmp(template->proceduretype, "-compile")) {
if (template->executeflags)
con_err("template compile warning: %s erroneous tag `E:` when only compiling\n", file);
if (template->comparematch)
con_err("template compile warning: %s erroneous tag `M:` when only compiling\n", file);
goto success;
} else if (!strcmp(template->proceduretype, "-execute")) {
if (!template->executeflags) {
/* default to $null */
template->executeflags = util_strdup("$null");
}
if (!template->comparematch) {
con_err("template compile error: %s missing `M:` tag (use `$null` for exclude)\n", file);
goto failure;
}
} else {
con_err("template compile error: %s invalid procedure type: %s\n", file, template->proceduretype);
goto failure;
}
success:
fclose(tempfile);
return template;
failure:
/*
* The file might not exist and we jump here when that doesn't happen
* so the check to see if it's not null here is required.
*/
if (tempfile)
fclose(tempfile);
mem_d (template);
return NULL;
}
void task_template_destroy(task_template_t **template) {
if (!template)
return;
if ((*template)->description) mem_d((*template)->description);
if ((*template)->failuremessage) mem_d((*template)->failuremessage);
if ((*template)->successmessage) mem_d((*template)->successmessage);
if ((*template)->proceduretype) mem_d((*template)->proceduretype);
if ((*template)->compileflags) mem_d((*template)->compileflags);
if ((*template)->executeflags) mem_d((*template)->executeflags);
if ((*template)->sourcefile) mem_d((*template)->sourcefile);
/*
* Delete all allocated string for task template then destroy the
* main vector.
*/
{
size_t i = 0;
for (; i < vec_size((*template)->comparematch); i++)
mem_d((*template)->comparematch[i]);
vec_free((*template)->comparematch);
}
/*
* Nullify all the template members otherwise NULL comparision
* checks will fail if template pointer is reused.
*/
mem_d(*template);
}
/*
* Now comes the task manager, this system allows adding tasks in and out
* of a task list. This is the executor of the tasks essentially as well.
*/
typedef struct {
task_template_t *template;
FILE **runhandles;
FILE *stderrlog;
FILE *stdoutlog;
char *stdoutlogfile;
char *stderrlogfile;
bool compiled;
} task_t;
task_t *task_tasks = NULL;
/*
* Read a directory and searches for all template files in it
* which is later used to run all tests.
*/
bool task_propagate(const char *curdir) {
bool success = true;
DIR *dir;
struct dirent *files;
struct stat directory;
char buffer[4096];
dir = opendir(curdir);
while ((files = readdir(dir))) {
memset (buffer, 0,sizeof(buffer));
snprintf(buffer, sizeof(buffer), "%s/%s", curdir, files->d_name);
if (stat(buffer, &directory) == -1) {
con_err("internal error: stat failed, aborting\n");
abort();
}
/* skip directories */
if (S_ISDIR(directory.st_mode))
continue;
/*
* We made it here, which concludes the file/directory is not
* actually a directory, so it must be a file :)
*/
if (strcmp(files->d_name + strlen(files->d_name) - 5, ".tmpl") == 0) {
task_template_t *template = task_template_compile(files->d_name, curdir);
char buf[4096]; /* one page should be enough */
task_t task;
util_debug("TEST", "compiling task template: %s/%s\n", curdir, files->d_name);
if (!template) {
con_err("error compiling task template: %s\n", files->d_name);
success = false;
continue;
}
/*
* Generate a temportary file name for the output binary
* so we don't trample over an existing one.
*/
template->tempfilename = tempnam(curdir, "TMPDAT");
/*
* Generate the command required to open a pipe to a process
* which will be refered to with a handle in the task for
* reading the data from the pipe.
*/
memset (buf,0,sizeof(buf));
snprintf(buf, sizeof(buf), "%s %s/%s %s -o %s",
task_bins[TASK_COMPILE],
curdir,
template->sourcefile,
template->compileflags,
template->tempfilename
);
/*
* The task template was compiled, now lets create a task from
* the template data which has now been propagated.
*/
task.template = template;
if (!(task.runhandles = task_popen(buf, "r"))) {
con_err("error opening pipe to process for test: %s\n", template->description);
success = false;
continue;
}
util_debug("TEST", "executing test: `%s` [%s]\n", template->description, buf);
/*
* Open up some file desciptors for logging the stdout/stderr
* to our own.
*/
memset (buf,0,sizeof(buf));
snprintf(buf, sizeof(buf), "%s.stdout", template->tempfilename);
task.stdoutlogfile = util_strdup(buf);
if (!(task.stdoutlog = fopen(buf, "w"))) {
con_err("error opening %s for stdout\n", buf);
continue;
}
memset (buf,0,sizeof(buf));
snprintf(buf, sizeof(buf), "%s.stderr", template->tempfilename);
task.stderrlogfile = util_strdup(buf);
if (!(task.stderrlog = fopen(buf, "w"))) {
con_err("error opening %s for stderr\n", buf);
continue;
}
vec_push(task_tasks, task);
}
}
closedir(dir);
return success;
}
/*
* Removes all temporary 'progs.dat' files created during compilation
* of all tests'
*/
void task_cleanup(const char *curdir) {
DIR *dir;
struct dirent *files;
char buffer[4096];
dir = opendir(curdir);
while ((files = readdir(dir))) {
memset(buffer, 0, sizeof(buffer));
if (strstr(files->d_name, "TMP")) {
snprintf(buffer, sizeof(buffer), "%s/%s", curdir, files->d_name);
if (remove(buffer))
con_err("error removing temporary file: %s\n", buffer);
else
util_debug("TEST", "removed temporary file: %s\n", buffer);
}
}
closedir(dir);
}
/*
* Task precleanup removes any existing temporary files or log files
* left behind from a previous invoke of the test-suite.
*/
void task_precleanup(const char *curdir) {
DIR *dir;
struct dirent *files;
char buffer[4096];
dir = opendir(curdir);
while ((files = readdir(dir))) {
memset(buffer, 0, sizeof(buffer));
if (strstr(files->d_name, "TMP") ||
strstr(files->d_name, ".stdout") ||
strstr(files->d_name, ".stderr"))
{
snprintf(buffer, sizeof(buffer), "%s/%s", curdir, files->d_name);
if (remove(buffer))
con_err("error removing temporary file: %s\n", buffer);
else
util_debug("TEST", "removed temporary file: %s\n", buffer);
}
}
closedir(dir);
}
void task_destroy(const char *curdir) {
/*
* Free all the data in the task list and finally the list itself
* then proceed to cleanup anything else outside the program like
* temporary files.
*/
size_t i;
for (i = 0; i < vec_size(task_tasks); i++) {
/*
* Close any open handles to files or processes here. It's mighty
* annoying to have to do all this cleanup work.
*/
if (task_tasks[i].runhandles) task_pclose(task_tasks[i].runhandles);
if (task_tasks[i].stdoutlog) fclose (task_tasks[i].stdoutlog);
if (task_tasks[i].stderrlog) fclose (task_tasks[i].stderrlog);
/*
* Only remove the log files if the test actually compiled otherwise
* forget about it.
*/
if (task_tasks[i].compiled) {
if (remove(task_tasks[i].stdoutlogfile))
con_err("error removing stdout log file: %s\n", task_tasks[i].stdoutlogfile);
else
util_debug("TEST", "removed stdout log file: %s\n", task_tasks[i].stdoutlogfile);
if (remove(task_tasks[i].stderrlogfile))
con_err("error removing stderr log file: %s\n", task_tasks[i].stderrlogfile);
else
util_debug("TEST", "removed stderr log file: %s\n", task_tasks[i].stderrlogfile);
}
/* free util_strdup data for log files */
mem_d(task_tasks[i].stdoutlogfile);
mem_d(task_tasks[i].stderrlogfile);
task_template_destroy(&task_tasks[i].template);
}
vec_free(task_tasks);
/*
* Cleanup outside stuff like temporary files.
*/
task_cleanup(curdir);
}
/*
* This executes the QCVM task for a specificly compiled progs.dat
* using the template passed into it for call-flags and user defined
* messages.
*/
bool task_execute(task_template_t *template) {
bool success = false;
FILE *execute;
char buffer[4096];
memset (buffer,0,sizeof(buffer));
/*
* Drop the execution flags for the QCVM if none where
* actually specified.
*/
if (!strcmp(template->executeflags, "$null")) {
snprintf(buffer, sizeof(buffer), "%s %s",
task_bins[TASK_EXECUTE],
template->tempfilename
);
} else {
snprintf(buffer, sizeof(buffer), "%s %s %s",
task_bins[TASK_EXECUTE],
template->executeflags,
template->tempfilename
);
}
util_debug("TEST", "executing qcvm: `%s` [%s]\n",
template->description,
buffer
);
execute = popen(buffer, "r");
if (!execute)
return false;
/*
* Now lets read the lines and compare them to the matches we expect
* and handle accordingly.
*/
{
char *data = NULL;
size_t size = 0;
size_t compare = 0;
while (util_getline(&data, &size, execute) != EOF) {
if (!strcmp(data, "No main function found\n")) {
con_err("test failure: `%s` [%s] (No main function found)\n",
template->description,
(template->failuremessage) ?
template->failuremessage : "unknown"
);
pclose(execute);
return false;
}
/*
* Trim newlines from data since they will just break our
* ability to properly validate matches.
*/
if (strrchr(data, '\n'))
*strrchr(data, '\n') = '\0';
/*
* We only care about the last line from the output for now
* implementing multi-line match is TODO.
*/
success = !!!(strcmp(data, template->comparematch[compare++]));
}
mem_d(data);
data = NULL;
}
pclose(execute);
return success;
}
/*
* This schedualizes all tasks and actually runs them individually
* this is generally easy for just -compile variants. For compile and
* execution this takes more work since a task needs to be generated
* from thin air and executed INLINE.
*/
void task_schedualize() {
bool execute = false;
char *data = NULL;
size_t size = 0;
size_t i;
for (i = 0; i < vec_size(task_tasks); i++) {
/*
* Generate a task from thin air if it requires execution in
* the QCVM.
*/
if (!strcmp(task_tasks[i].template->proceduretype, "-execute"))
execute = true;
/*
* We assume it compiled before we actually compiled :). On error
* we change the value
*/
task_tasks[i].compiled = true;
/*
* Read data from stdout first and pipe that stuff into a log file
* then we do the same for stderr.
*/
while (util_getline(&data, &size, task_tasks[i].runhandles[1]) != EOF) {
fputs(data, task_tasks[i].stdoutlog);
fflush(task_tasks[i].stdoutlog);
}
while (util_getline(&data, &size, task_tasks[i].runhandles[2]) != EOF) {
/*
* If a string contains an error we just dissalow execution
* of it in the vm.
*
* TODO: make this more percise, e.g if we print a warning
* that refers to a variable named error, or something like
* that .. then this will blowup :P
*/
if (strstr(data, "error")) {
execute = false;
task_tasks[i].compiled = false;
}
fputs(data, task_tasks[i].stderrlog);
fflush(task_tasks[i].stdoutlog);
}
/*
* If we can execute we do so after all data has been read and
* this paticular task has coupled execution in its procedure type
*/
if (!execute)
continue;
/*
* If we made it here that concludes the task is to be executed
* in the virtual machine.
*/
if (!task_execute(task_tasks[i].template)) {
con_err("test failure: `%s` [%s] see %s.stdout and %s.stderr\n",
task_tasks[i].template->description,
(task_tasks[i].template->failuremessage) ?
task_tasks[i].template->failuremessage : "unknown",
task_tasks[i].template->tempfilename,
task_tasks[i].template->tempfilename
);
continue;
}
con_out("test succeeded: `%s` [%s]\n",
task_tasks[i].template->description,
(task_tasks[i].template->successmessage) ?
task_tasks[i].template->successmessage : "unknown"
);
}
mem_d(data);
}
/*
* This is the heart of the whole test-suite process. This cleans up
* any existing temporary files left behind as well as log files left
* behind. Then it propagates a list of tests from `curdir` by scaning
* it for template files and compiling them into tasks, in which it
* schedualizes them (executes them) and actually reports errors and
* what not. It then proceeds to destroy the tasks and return memory
* it's the engine :)
*
* It returns true of tests could be propagated, otherwise it returns
* false.
*
* It expects con_init() was called before hand.
*/
bool test_perform(const char *curdir) {
task_precleanup(curdir);
if (!task_propagate(curdir)) {
con_err("error: failed to propagate tasks\n");
task_destroy(curdir);
return false;
}
/*
* If we made it here all tasks where propagated from their resultant
* template file. So we can start the FILO scheduler, this has been
* designed in the most thread-safe way possible for future threading
* it's designed to prevent lock contention, and possible syncronization
* issues.
*/
task_schedualize();
task_destroy(curdir);
return true;
}
/*
* Fancy GCC-like LONG parsing allows things like --opt=param with
* assignment operator. This is used for redirecting stdout/stderr
* console to specific files of your choice.
*/
static bool parsecmd(const char *optname, int *argc_, char ***argv_, char **out, int ds, bool split) {
int argc = *argc_;
char **argv = *argv_;
size_t len = strlen(optname);
if (strncmp(argv[0]+ds, optname, len))
return false;
/* it's --optname, check how the parameter is supplied */
if (argv[0][ds+len] == '=') {
*out = argv[0]+ds+len+1;
return true;
}
if (!split || argc < ds) /* no parameter was provided, or only single-arg form accepted */
return false;
/* using --opt param */
*out = argv[1];
--*argc_;
++*argv_;
return true;
}
int main(int argc, char **argv) {
char *redirout = (char*)stdout;
char *redirerr = (char*)stderr;
con_init();
/*
* Command line option parsing commences now We only need to support
* a few things in the test suite.
*/
while (argc > 1) {
++argv;
--argc;
if (argv[0][0] == '-') {
if (parsecmd("redirout", &argc, &argv, &redirout, 1, false))
continue;
if (parsecmd("redirerr", &argc, &argv, &redirerr, 1, false))
continue;
con_change(redirout, redirerr);
if (!strcmp(argv[0]+1, "debug")) {
opts_debug = true;
continue;
}
if (!strcmp(argv[0]+1, "memchk")) {
opts_memchk = true;
continue;
}
if (!strcmp(argv[0]+1, "nocolor")) {
con_color(0);
continue;
}
con_err("invalid argument %s\n", argv[0]+1);
return -1;
}
}
con_change(redirout, redirerr);
test_perform("tests");
util_meminfo();
return 0;
}