mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-30 15:41:12 +00:00
653 lines
19 KiB
C++
653 lines
19 KiB
C++
#ifndef GMQCC_AST_HDR
|
|
#define GMQCC_AST_HDR
|
|
#include <vector>
|
|
#include "ir.h"
|
|
|
|
typedef uint16_t ast_flag_t;
|
|
|
|
/* Note: I will not be using a _t suffix for the
|
|
* "main" ast node types for now.
|
|
*/
|
|
|
|
struct ast_node;
|
|
struct ast_expression;
|
|
struct ast_value;
|
|
struct ast_function;
|
|
struct ast_block;
|
|
struct ast_binary;
|
|
struct ast_store;
|
|
struct ast_binstore;
|
|
struct ast_entfield;
|
|
struct ast_ifthen;
|
|
struct ast_ternary;
|
|
struct ast_loop;
|
|
struct ast_call;
|
|
struct ast_unary;
|
|
struct ast_return;
|
|
struct ast_member;
|
|
struct ast_array_index;
|
|
struct ast_breakcont;
|
|
struct ast_switch;
|
|
struct ast_label;
|
|
struct ast_goto;
|
|
struct ast_argpipe;
|
|
struct ast_state;
|
|
|
|
enum {
|
|
AST_FLAG_VARIADIC = 1 << 0,
|
|
AST_FLAG_NORETURN = 1 << 1,
|
|
AST_FLAG_INLINE = 1 << 2,
|
|
AST_FLAG_INITIALIZED = 1 << 3,
|
|
AST_FLAG_DEPRECATED = 1 << 4,
|
|
AST_FLAG_INCLUDE_DEF = 1 << 5,
|
|
AST_FLAG_IS_VARARG = 1 << 6,
|
|
AST_FLAG_ALIAS = 1 << 7,
|
|
AST_FLAG_ERASEABLE = 1 << 8,
|
|
AST_FLAG_ACCUMULATE = 1 << 9,
|
|
|
|
/* An array declared as []
|
|
* so that the size is taken from the initializer
|
|
*/
|
|
AST_FLAG_ARRAY_INIT = 1 << 10,
|
|
|
|
AST_FLAG_FINAL_DECL = 1 << 11,
|
|
|
|
/* Several coverage options
|
|
* AST_FLAG_COVERAGE means there was an explicit [[coverage]] attribute,
|
|
* which will overwrite the default set via the commandline switches.
|
|
* BLOCK_COVERAGE inserts coverage() calls into every basic block.
|
|
* In the future there might be more options like tracking variable access
|
|
* by creating get/set wrapper functions.
|
|
*/
|
|
AST_FLAG_COVERAGE = 1 << 12,
|
|
AST_FLAG_BLOCK_COVERAGE = 1 << 13,
|
|
|
|
AST_FLAG_LAST,
|
|
AST_FLAG_TYPE_MASK = (AST_FLAG_VARIADIC | AST_FLAG_NORETURN),
|
|
AST_FLAG_COVERAGE_MASK = (AST_FLAG_BLOCK_COVERAGE)
|
|
};
|
|
|
|
enum {
|
|
TYPE_ast_node, /* 0 */
|
|
TYPE_ast_expression, /* 1 */
|
|
TYPE_ast_value, /* 2 */
|
|
TYPE_ast_function, /* 3 */
|
|
TYPE_ast_block, /* 4 */
|
|
TYPE_ast_binary, /* 5 */
|
|
TYPE_ast_store, /* 6 */
|
|
TYPE_ast_binstore, /* 7 */
|
|
TYPE_ast_entfield, /* 8 */
|
|
TYPE_ast_ifthen, /* 9 */
|
|
TYPE_ast_ternary, /* 10 */
|
|
TYPE_ast_loop, /* 11 */
|
|
TYPE_ast_call, /* 12 */
|
|
TYPE_ast_unary, /* 13 */
|
|
TYPE_ast_return, /* 14 */
|
|
TYPE_ast_member, /* 15 */
|
|
TYPE_ast_array_index, /* 16 */
|
|
TYPE_ast_breakcont, /* 17 */
|
|
TYPE_ast_switch, /* 18 */
|
|
TYPE_ast_label, /* 19 */
|
|
TYPE_ast_goto, /* 20 */
|
|
TYPE_ast_argpipe, /* 21 */
|
|
TYPE_ast_state /* 22 */
|
|
};
|
|
|
|
#define ast_istype(x, t) ( ((ast_node*)x)->node_type == (TYPE_##t) )
|
|
#define ast_ctx(node) (((ast_node*)(node))->context)
|
|
#define ast_side_effects(node) (((ast_node*)(node))->side_effects)
|
|
|
|
/* Node interface with common components
|
|
*/
|
|
typedef void ast_node_delete(ast_node*);
|
|
|
|
struct ast_node
|
|
{
|
|
lex_ctx_t context;
|
|
/* I don't feel comfortable using keywords like 'delete' as names... */
|
|
ast_node_delete *destroy;
|
|
int node_type;
|
|
/* keep_node: if a node contains this node, 'keep_node'
|
|
* prevents its dtor from destroying this node as well.
|
|
*/
|
|
bool keep_node;
|
|
bool side_effects;
|
|
};
|
|
|
|
#define ast_delete(x) (*( ((ast_node*)(x))->destroy ))((ast_node*)(x))
|
|
#define ast_unref(x) do \
|
|
{ \
|
|
if (! (((ast_node*)(x))->keep_node) ) { \
|
|
ast_delete(x); \
|
|
} \
|
|
} while(0)
|
|
|
|
/* Expression interface
|
|
*
|
|
* Any expression or block returns an ir_value, and needs
|
|
* to know the current function.
|
|
*/
|
|
typedef bool ast_expression_codegen(ast_expression*,
|
|
ast_function*,
|
|
bool lvalue,
|
|
ir_value**);
|
|
/* TODO: the codegen function should take an output-type parameter
|
|
* indicating whether a variable, type, label etc. is expected, and
|
|
* an environment!
|
|
* Then later an ast_ident could have a codegen using this to figure
|
|
* out what to look for.
|
|
* eg. in code which uses a not-yet defined variable, the expression
|
|
* would take an ast_ident, and the codegen would be called with
|
|
* type `expression`, so the ast_ident's codegen would search for
|
|
* variables through the environment (or functions, constants...).
|
|
*/
|
|
struct ast_expression : ast_node {
|
|
ast_expression() {}
|
|
|
|
ast_expression_codegen *codegen;
|
|
int vtype;
|
|
ast_expression *next;
|
|
/* arrays get a member-count */
|
|
size_t count;
|
|
std::vector<ast_value*> type_params;
|
|
|
|
ast_flag_t flags;
|
|
/* void foo(string...) gets varparam set as a restriction
|
|
* for variadic parameters
|
|
*/
|
|
ast_expression *varparam;
|
|
/* The codegen functions should store their output values
|
|
* so we can call it multiple times without re-evaluating.
|
|
* Store lvalue and rvalue seperately though. So that
|
|
* ast_entfield for example can generate both if required.
|
|
*/
|
|
ir_value *outl;
|
|
ir_value *outr;
|
|
};
|
|
|
|
/* Value
|
|
*
|
|
* Types are also values, both have a type and a name.
|
|
* especially considering possible constructs like typedefs.
|
|
* typedef float foo;
|
|
* is like creating a 'float foo', foo serving as the type's name.
|
|
*/
|
|
union basic_value_t {
|
|
qcfloat_t vfloat;
|
|
int vint;
|
|
vec3_t vvec;
|
|
const char *vstring;
|
|
int ventity;
|
|
ast_function *vfunc;
|
|
ast_value *vfield;
|
|
};
|
|
|
|
struct ast_value : ast_expression
|
|
{
|
|
const char *name;
|
|
const char *desc;
|
|
|
|
const char *argcounter;
|
|
|
|
int cvq; /* const/var qualifier */
|
|
bool isfield; /* this declares a field */
|
|
bool isimm; /* an immediate, not just const */
|
|
bool hasvalue;
|
|
bool inexact; /* inexact coming from folded expression */
|
|
basic_value_t constval;
|
|
/* for TYPE_ARRAY we have an optional vector
|
|
* of constants when an initializer list
|
|
* was provided.
|
|
*/
|
|
std::vector<basic_value_t> initlist;
|
|
|
|
/* usecount for the parser */
|
|
size_t uses;
|
|
|
|
ir_value *ir_v;
|
|
ir_value **ir_values;
|
|
size_t ir_value_count;
|
|
|
|
/* ONLY for arrays in progs version up to 6 */
|
|
ast_value *setter;
|
|
ast_value *getter;
|
|
|
|
|
|
bool intrinsic; /* true if associated with intrinsic */
|
|
};
|
|
|
|
ast_value* ast_value_new(lex_ctx_t ctx, const char *name, int qctype);
|
|
ast_value* ast_value_copy(const ast_value *self);
|
|
/* This will NOT delete an underlying ast_function */
|
|
void ast_value_delete(ast_value*);
|
|
|
|
bool ast_value_set_name(ast_value*, const char *name);
|
|
|
|
/*
|
|
bool ast_value_codegen(ast_value*, ast_function*, bool lvalue, ir_value**);
|
|
bool ast_local_codegen(ast_value *self, ir_function *func, bool isparam);
|
|
*/
|
|
|
|
bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield);
|
|
|
|
void ast_value_params_add(ast_value*, ast_value*);
|
|
|
|
bool ast_compare_type(ast_expression *a, ast_expression *b);
|
|
ast_expression* ast_type_copy(lex_ctx_t ctx, const ast_expression *ex);
|
|
#define ast_type_adopt(a, b) ast_type_adopt_impl((ast_expression*)(a), (ast_expression*)(b))
|
|
void ast_type_adopt_impl(ast_expression *self, const ast_expression *other);
|
|
void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize);
|
|
|
|
enum ast_binary_ref {
|
|
AST_REF_NONE = 0,
|
|
AST_REF_LEFT = 1 << 1,
|
|
AST_REF_RIGHT = 1 << 2,
|
|
AST_REF_ALL = (AST_REF_LEFT | AST_REF_RIGHT)
|
|
};
|
|
|
|
|
|
/* Binary
|
|
*
|
|
* A value-returning binary expression.
|
|
*/
|
|
struct ast_binary : ast_expression
|
|
{
|
|
int op;
|
|
ast_expression *left;
|
|
ast_expression *right;
|
|
ast_binary_ref refs;
|
|
bool right_first;
|
|
};
|
|
ast_binary* ast_binary_new(lex_ctx_t ctx,
|
|
int op,
|
|
ast_expression *left,
|
|
ast_expression *right);
|
|
|
|
/* Binstore
|
|
*
|
|
* An assignment including a binary expression with the source as left operand.
|
|
* Eg. a += b; is a binstore { INSTR_STORE, INSTR_ADD, a, b }
|
|
*/
|
|
struct ast_binstore : ast_expression
|
|
{
|
|
int opstore;
|
|
int opbin;
|
|
ast_expression *dest;
|
|
ast_expression *source;
|
|
/* for &~= which uses the destination in a binary in source we can use this */
|
|
bool keep_dest;
|
|
};
|
|
ast_binstore* ast_binstore_new(lex_ctx_t ctx,
|
|
int storeop,
|
|
int op,
|
|
ast_expression *left,
|
|
ast_expression *right);
|
|
|
|
/* Unary
|
|
*
|
|
* Regular unary expressions: not,neg
|
|
*/
|
|
struct ast_unary : ast_expression
|
|
{
|
|
int op;
|
|
ast_expression *operand;
|
|
};
|
|
ast_unary* ast_unary_new(lex_ctx_t ctx,
|
|
int op,
|
|
ast_expression *expr);
|
|
|
|
/* Return
|
|
*
|
|
* Make sure 'return' only happens at the end of a block, otherwise the IR
|
|
* will refuse to create further instructions.
|
|
* This should be honored by the parser.
|
|
*/
|
|
struct ast_return : ast_expression
|
|
{
|
|
ast_expression *operand;
|
|
};
|
|
ast_return* ast_return_new(lex_ctx_t ctx,
|
|
ast_expression *expr);
|
|
|
|
/* Entity-field
|
|
*
|
|
* This must do 2 things:
|
|
* -) Provide a way to fetch an entity field value. (Rvalue)
|
|
* -) Provide a pointer to an entity field. (Lvalue)
|
|
* The problem:
|
|
* In original QC, there's only a STORE via pointer, but
|
|
* no LOAD via pointer.
|
|
* So we must know beforehand if we are going to read or assign
|
|
* the field.
|
|
* For this we will have to extend the codegen() functions with
|
|
* a flag saying whether or not we need an L or an R-value.
|
|
*/
|
|
struct ast_entfield : ast_expression
|
|
{
|
|
/* The entity can come from an expression of course. */
|
|
ast_expression *entity;
|
|
/* As can the field, it just must result in a value of TYPE_FIELD */
|
|
ast_expression *field;
|
|
};
|
|
ast_entfield* ast_entfield_new(lex_ctx_t ctx, ast_expression *entity, ast_expression *field);
|
|
ast_entfield* ast_entfield_new_force(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype);
|
|
|
|
/* Member access:
|
|
*
|
|
* For now used for vectors. If we get structs or unions
|
|
* we can have them handled here as well.
|
|
*/
|
|
struct ast_member : ast_expression
|
|
{
|
|
ast_expression *owner;
|
|
unsigned int field;
|
|
const char *name;
|
|
bool rvalue;
|
|
};
|
|
ast_member* ast_member_new(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const char *name);
|
|
void ast_member_delete(ast_member*);
|
|
bool ast_member_set_name(ast_member*, const char *name);
|
|
|
|
|
|
/* Array index access:
|
|
*
|
|
* QC forces us to take special action on arrays:
|
|
* an ast_store on an ast_array_index must not codegen the index,
|
|
* but call its setter - unless we have an instruction set which supports
|
|
* what we need.
|
|
* Any other array index access will be codegened to a call to the getter.
|
|
* In any case, accessing an element via a compiletime-constant index will
|
|
* result in quick access to that variable.
|
|
*/
|
|
struct ast_array_index : ast_expression
|
|
{
|
|
ast_expression *array;
|
|
ast_expression *index;
|
|
};
|
|
ast_array_index* ast_array_index_new(lex_ctx_t ctx, ast_expression *array, ast_expression *index);
|
|
|
|
/* Vararg pipe node:
|
|
*
|
|
* copy all varargs starting from a specific index
|
|
*/
|
|
struct ast_argpipe : ast_expression
|
|
{
|
|
ast_expression *index;
|
|
};
|
|
ast_argpipe* ast_argpipe_new(lex_ctx_t ctx, ast_expression *index);
|
|
|
|
/* Store
|
|
*
|
|
* Stores left<-right and returns left.
|
|
* Specialized binary expression node
|
|
*/
|
|
struct ast_store : ast_expression
|
|
{
|
|
int op;
|
|
ast_expression *dest;
|
|
ast_expression *source;
|
|
};
|
|
ast_store* ast_store_new(lex_ctx_t ctx, int op,
|
|
ast_expression *d, ast_expression *s);
|
|
|
|
/* If
|
|
*
|
|
* A general 'if then else' statement, either side can be nullptr and will
|
|
* thus be omitted. It is an error for *both* cases to be nullptr at once.
|
|
*
|
|
* During its 'codegen' it'll be changing the ast_function's block.
|
|
*
|
|
* An if is also an "expression". Its codegen will put nullptr into the
|
|
* output field though. For ternary expressions an ast_ternary will be
|
|
* added.
|
|
*/
|
|
struct ast_ifthen : ast_expression
|
|
{
|
|
ast_expression *cond;
|
|
/* It's all just 'expressions', since an ast_block is one too. */
|
|
ast_expression *on_true;
|
|
ast_expression *on_false;
|
|
};
|
|
ast_ifthen* ast_ifthen_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
|
|
|
|
/* Ternary expressions...
|
|
*
|
|
* Contrary to 'if-then-else' nodes, ternary expressions actually
|
|
* return a value, otherwise they behave the very same way.
|
|
* The difference in 'codegen' is that it'll return the value of
|
|
* a PHI node.
|
|
*
|
|
* The other difference is that in an ast_ternary, NEITHER side
|
|
* must be nullptr, there's ALWAYS an else branch.
|
|
*
|
|
* This is the only ast_node beside ast_value which contains
|
|
* an ir_value. Theoretically we don't need to remember it though.
|
|
*/
|
|
struct ast_ternary : ast_expression
|
|
{
|
|
ast_expression *cond;
|
|
/* It's all just 'expressions', since an ast_block is one too. */
|
|
ast_expression *on_true;
|
|
ast_expression *on_false;
|
|
};
|
|
ast_ternary* ast_ternary_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse);
|
|
|
|
/* A general loop node
|
|
*
|
|
* For convenience it contains 4 parts:
|
|
* -) (ini) = initializing expression
|
|
* -) (pre) = pre-loop condition
|
|
* -) (pst) = post-loop condition
|
|
* -) (inc) = "increment" expression
|
|
* The following is a psudo-representation of this loop
|
|
* note that '=>' bears the logical meaning of "implies".
|
|
* (a => b) equals (!a || b)
|
|
|
|
{ini};
|
|
while (has_pre => {pre})
|
|
{
|
|
{body};
|
|
|
|
continue: // a 'continue' will jump here
|
|
if (has_pst => {pst})
|
|
break;
|
|
|
|
{inc};
|
|
}
|
|
*/
|
|
struct ast_loop : ast_expression
|
|
{
|
|
ast_expression *initexpr;
|
|
ast_expression *precond;
|
|
ast_expression *postcond;
|
|
ast_expression *increment;
|
|
ast_expression *body;
|
|
/* For now we allow a seperate flag on whether or not the condition
|
|
* is supposed to be true or false.
|
|
* That way, the parser can generate a 'while not(!x)' for `while(x)`
|
|
* if desired, which is useful for the new -f{true,false}-empty-strings
|
|
* flag.
|
|
*/
|
|
bool pre_not;
|
|
bool post_not;
|
|
};
|
|
ast_loop* ast_loop_new(lex_ctx_t ctx,
|
|
ast_expression *initexpr,
|
|
ast_expression *precond, bool pre_not,
|
|
ast_expression *postcond, bool post_not,
|
|
ast_expression *increment,
|
|
ast_expression *body);
|
|
|
|
/* Break/Continue
|
|
*/
|
|
struct ast_breakcont : ast_expression
|
|
{
|
|
bool is_continue;
|
|
unsigned int levels;
|
|
};
|
|
ast_breakcont* ast_breakcont_new(lex_ctx_t ctx, bool iscont, unsigned int levels);
|
|
|
|
/* Switch Statements
|
|
*
|
|
* A few notes about this: with the original QCVM, no real optimization
|
|
* is possible. The SWITCH instruction set isn't really helping a lot, since
|
|
* it only collapes the EQ and IF instructions into one.
|
|
* Note: Declaring local variables inside caseblocks is normal.
|
|
* Since we don't have to deal with a stack there's no unnatural behaviour to
|
|
* be expected from it.
|
|
* TODO: Ticket #20
|
|
*/
|
|
struct ast_switch_case {
|
|
ast_expression *value; /* #20 will replace this */
|
|
ast_expression *code;
|
|
};
|
|
|
|
struct ast_switch : ast_expression
|
|
{
|
|
ast_expression *operand;
|
|
std::vector<ast_switch_case> cases;
|
|
};
|
|
|
|
ast_switch* ast_switch_new(lex_ctx_t ctx, ast_expression *op);
|
|
|
|
/* Label nodes
|
|
*
|
|
* Introduce a label which can be used together with 'goto'
|
|
*/
|
|
struct ast_label : ast_expression
|
|
{
|
|
const char *name;
|
|
ir_block *irblock;
|
|
std::vector<ast_goto*> gotos;
|
|
|
|
/* means it has not yet been defined */
|
|
bool undefined;
|
|
};
|
|
|
|
ast_label* ast_label_new(lex_ctx_t ctx, const char *name, bool undefined);
|
|
|
|
/* GOTO nodes
|
|
*
|
|
* Go to a label, the label node is filled in at a later point!
|
|
*/
|
|
struct ast_goto : ast_expression
|
|
{
|
|
const char *name;
|
|
ast_label *target;
|
|
ir_block *irblock_from;
|
|
};
|
|
|
|
ast_goto* ast_goto_new(lex_ctx_t ctx, const char *name);
|
|
void ast_goto_set_label(ast_goto*, ast_label*);
|
|
|
|
/* STATE node
|
|
*
|
|
* For frame/think state updates: void foo() [framenum, nextthink] {}
|
|
*/
|
|
struct ast_state : ast_expression
|
|
{
|
|
ast_expression *framenum;
|
|
ast_expression *nextthink;
|
|
};
|
|
ast_state* ast_state_new(lex_ctx_t ctx, ast_expression *frame, ast_expression *think);
|
|
void ast_state_delete(ast_state*);
|
|
|
|
/* CALL node
|
|
*
|
|
* Contains an ast_expression as target, rather than an ast_function/value.
|
|
* Since it's how QC works, every ast_function has an ast_value
|
|
* associated anyway - in other words, the VM contains function
|
|
* pointers for every function anyway. Thus, this node will call
|
|
* expression.
|
|
* Additionally it contains a list of ast_expressions as parameters.
|
|
* Since calls can return values, an ast_call is also an ast_expression.
|
|
*/
|
|
struct ast_call : ast_expression
|
|
{
|
|
ast_expression *func;
|
|
std::vector<ast_expression *> params;
|
|
ast_expression *va_count;
|
|
};
|
|
ast_call* ast_call_new(lex_ctx_t ctx,
|
|
ast_expression *funcexpr);
|
|
bool ast_call_check_types(ast_call*, ast_expression *this_func_va_type);
|
|
|
|
/* Blocks
|
|
*
|
|
*/
|
|
struct ast_block : ast_expression
|
|
{
|
|
std::vector<ast_value*> locals;
|
|
std::vector<ast_expression*> exprs;
|
|
std::vector<ast_expression*> collect;
|
|
};
|
|
ast_block* ast_block_new(lex_ctx_t ctx);
|
|
void ast_block_delete(ast_block*);
|
|
void ast_block_set_type(ast_block*, ast_expression *from);
|
|
void ast_block_collect(ast_block*, ast_expression*);
|
|
|
|
bool GMQCC_WARN ast_block_add_expr(ast_block*, ast_expression*);
|
|
|
|
/* Function
|
|
*
|
|
* Contains a list of blocks... at least in theory.
|
|
* Usually there's just the main block, other blocks are inside that.
|
|
*
|
|
* Technically, functions don't need to be an AST node, since we have
|
|
* neither functions inside functions, nor lambdas, and function
|
|
* pointers could just work with a name. However, this way could be
|
|
* more flexible, and adds no real complexity.
|
|
*/
|
|
struct ast_function
|
|
{
|
|
ast_node node;
|
|
|
|
ast_value *function_type;
|
|
const char *name;
|
|
|
|
int builtin;
|
|
|
|
/* list of used-up names for statics without the count suffix */
|
|
std::vector<char*> static_names;
|
|
/* number of static variables, by convention this includes the
|
|
* ones without the count-suffix - remember this when dealing
|
|
* with savegames. uint instead of size_t as %zu in printf is
|
|
* C99, so no windows support. */
|
|
unsigned int static_count;
|
|
|
|
ir_function *ir_func;
|
|
ir_block *curblock;
|
|
std::vector<ir_block*> breakblocks;
|
|
std::vector<ir_block*> continueblocks;
|
|
|
|
size_t labelcount;
|
|
/* in order for thread safety - for the optional
|
|
* channel abesed multithreading... keeping a buffer
|
|
* here to use in ast_function_label.
|
|
*/
|
|
char labelbuf[64];
|
|
std::vector<ast_block*> blocks;
|
|
ast_value *varargs;
|
|
ast_value *argc;
|
|
ast_value *fixedparams;
|
|
ast_value *return_value;
|
|
};
|
|
ast_function* ast_function_new(lex_ctx_t ctx, const char *name, ast_value *vtype);
|
|
/* This will NOT delete the underlying ast_value */
|
|
void ast_function_delete(ast_function*);
|
|
/* For "optimized" builds this can just keep returning "foo"...
|
|
* or whatever...
|
|
*/
|
|
const char* ast_function_label(ast_function*, const char *prefix);
|
|
|
|
bool ast_function_codegen(ast_function *self, ir_builder *builder);
|
|
bool ast_generate_accessors(ast_value *asvalue, ir_builder *ir);
|
|
|
|
/*
|
|
* If the condition creates a situation where this becomes -1 size it means there are
|
|
* more AST_FLAGs than the type ast_flag_t is capable of holding. So either eliminate
|
|
* the AST flag count or change the ast_flag_t typedef to a type large enough to accomodate
|
|
* all the flags.
|
|
*/
|
|
typedef int static_assert_is_ast_flag_safe [((AST_FLAG_LAST) <= (ast_flag_t)(-1)) ? 1 : -1];
|
|
#endif
|