mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-30 15:41:12 +00:00
1770 lines
51 KiB
C
1770 lines
51 KiB
C
/*
|
|
* Copyright (C) 2012
|
|
* Wolfgang Bumiller
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished to do
|
|
* so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "gmqcc.h"
|
|
#include "ast.h"
|
|
|
|
#define ast_instantiate(T, ctx, destroyfn) \
|
|
T* self = (T*)mem_a(sizeof(T)); \
|
|
if (!self) { \
|
|
return NULL; \
|
|
} \
|
|
ast_node_init((ast_node*)self, ctx, TYPE_##T); \
|
|
( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
|
|
|
|
/* error handling */
|
|
static void asterror(lex_ctx ctx, const char *msg, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, msg);
|
|
cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/* It must not be possible to get here. */
|
|
static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
|
|
{
|
|
fprintf(stderr, "ast node missing destroy()\n");
|
|
abort();
|
|
}
|
|
|
|
/* Initialize main ast node aprts */
|
|
static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
|
|
{
|
|
self->node.context = ctx;
|
|
self->node.destroy = &_ast_node_destroy;
|
|
self->node.keep = false;
|
|
self->node.nodetype = nodetype;
|
|
}
|
|
|
|
/* General expression initialization */
|
|
static void ast_expression_init(ast_expression *self,
|
|
ast_expression_codegen *codegen)
|
|
{
|
|
self->expression.codegen = codegen;
|
|
self->expression.vtype = TYPE_VOID;
|
|
self->expression.next = NULL;
|
|
self->expression.outl = NULL;
|
|
self->expression.outr = NULL;
|
|
self->expression.variadic = false;
|
|
MEM_VECTOR_INIT(&self->expression, params);
|
|
}
|
|
|
|
static void ast_expression_delete(ast_expression *self)
|
|
{
|
|
size_t i;
|
|
if (self->expression.next)
|
|
ast_delete(self->expression.next);
|
|
for (i = 0; i < self->expression.params_count; ++i) {
|
|
ast_delete(self->expression.params[i]);
|
|
}
|
|
MEM_VECTOR_CLEAR(&self->expression, params);
|
|
}
|
|
|
|
static void ast_expression_delete_full(ast_expression *self)
|
|
{
|
|
ast_expression_delete(self);
|
|
mem_d(self);
|
|
}
|
|
|
|
MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
|
|
|
|
ast_value* ast_value_copy(const ast_value *self)
|
|
{
|
|
size_t i;
|
|
const ast_expression_common *fromex;
|
|
ast_expression_common *selfex;
|
|
ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
|
|
if (self->expression.next) {
|
|
cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
|
|
if (!cp->expression.next) {
|
|
ast_value_delete(cp);
|
|
return NULL;
|
|
}
|
|
}
|
|
fromex = &self->expression;
|
|
selfex = &cp->expression;
|
|
selfex->variadic = fromex->variadic;
|
|
for (i = 0; i < fromex->params_count; ++i) {
|
|
ast_value *v = ast_value_copy(fromex->params[i]);
|
|
if (!v || !ast_expression_common_params_add(selfex, v)) {
|
|
ast_value_delete(cp);
|
|
return NULL;
|
|
}
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
|
|
{
|
|
size_t i;
|
|
const ast_expression_common *fromex;
|
|
ast_expression_common *selfex;
|
|
self->expression.vtype = other->expression.vtype;
|
|
if (other->expression.next) {
|
|
self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
|
|
if (!self->expression.next)
|
|
return false;
|
|
}
|
|
fromex = &other->expression;
|
|
selfex = &self->expression;
|
|
selfex->variadic = fromex->variadic;
|
|
for (i = 0; i < fromex->params_count; ++i) {
|
|
ast_value *v = ast_value_copy(fromex->params[i]);
|
|
if (!v || !ast_expression_common_params_add(selfex, v))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
|
|
{
|
|
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
|
|
ast_expression_init(self, NULL);
|
|
self->expression.codegen = NULL;
|
|
self->expression.next = NULL;
|
|
self->expression.vtype = vtype;
|
|
return self;
|
|
}
|
|
|
|
ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
|
|
{
|
|
size_t i;
|
|
const ast_expression_common *fromex;
|
|
ast_expression_common *selfex;
|
|
|
|
if (!ex)
|
|
return NULL;
|
|
else
|
|
{
|
|
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
|
|
ast_expression_init(self, NULL);
|
|
|
|
fromex = &ex->expression;
|
|
selfex = &self->expression;
|
|
|
|
/* This may never be codegen()d */
|
|
selfex->codegen = NULL;
|
|
|
|
selfex->vtype = fromex->vtype;
|
|
if (fromex->next)
|
|
{
|
|
selfex->next = ast_type_copy(ctx, fromex->next);
|
|
if (!selfex->next) {
|
|
ast_expression_delete_full(self);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
selfex->next = NULL;
|
|
|
|
selfex->variadic = fromex->variadic;
|
|
for (i = 0; i < fromex->params_count; ++i) {
|
|
ast_value *v = ast_value_copy(fromex->params[i]);
|
|
if (!v || !ast_expression_common_params_add(selfex, v)) {
|
|
ast_expression_delete_full(self);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return self;
|
|
}
|
|
}
|
|
|
|
bool ast_compare_type(ast_expression *a, ast_expression *b)
|
|
{
|
|
if (a->expression.vtype != b->expression.vtype)
|
|
return false;
|
|
if (!a->expression.next != !b->expression.next)
|
|
return false;
|
|
if (a->expression.params_count != b->expression.params_count)
|
|
return false;
|
|
if (a->expression.variadic != b->expression.variadic)
|
|
return false;
|
|
if (a->expression.params_count) {
|
|
size_t i;
|
|
for (i = 0; i < a->expression.params_count; ++i) {
|
|
if (!ast_compare_type((ast_expression*)a->expression.params[i],
|
|
(ast_expression*)b->expression.params[i]))
|
|
return false;
|
|
}
|
|
}
|
|
if (a->expression.next)
|
|
return ast_compare_type(a->expression.next, b->expression.next);
|
|
return true;
|
|
}
|
|
|
|
ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
|
|
{
|
|
ast_instantiate(ast_value, ctx, ast_value_delete);
|
|
ast_expression_init((ast_expression*)self,
|
|
(ast_expression_codegen*)&ast_value_codegen);
|
|
self->expression.node.keep = true; /* keep */
|
|
|
|
self->name = name ? util_strdup(name) : NULL;
|
|
self->expression.vtype = t;
|
|
self->expression.next = NULL;
|
|
self->isconst = false;
|
|
self->uses = 0;
|
|
memset(&self->constval, 0, sizeof(self->constval));
|
|
|
|
self->ir_v = NULL;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_value_delete(ast_value* self)
|
|
{
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
if (self->isconst) {
|
|
switch (self->expression.vtype)
|
|
{
|
|
case TYPE_STRING:
|
|
mem_d((void*)self->constval.vstring);
|
|
break;
|
|
case TYPE_FUNCTION:
|
|
/* unlink us from the function node */
|
|
self->constval.vfunc->vtype = NULL;
|
|
break;
|
|
/* NOTE: delete function? currently collected in
|
|
* the parser structure
|
|
*/
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
|
|
{
|
|
return ast_expression_common_params_add(&self->expression, p);
|
|
}
|
|
|
|
bool ast_value_set_name(ast_value *self, const char *name)
|
|
{
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
self->name = util_strdup(name);
|
|
return !!self->name;
|
|
}
|
|
|
|
ast_binary* ast_binary_new(lex_ctx ctx, int op,
|
|
ast_expression* left, ast_expression* right)
|
|
{
|
|
ast_instantiate(ast_binary, ctx, ast_binary_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
|
|
|
|
self->op = op;
|
|
self->left = left;
|
|
self->right = right;
|
|
|
|
if (op >= INSTR_EQ_F && op <= INSTR_GT)
|
|
self->expression.vtype = TYPE_FLOAT;
|
|
else if (op == INSTR_AND || op == INSTR_OR ||
|
|
op == INSTR_BITAND || op == INSTR_BITOR)
|
|
self->expression.vtype = TYPE_FLOAT;
|
|
else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
|
|
self->expression.vtype = TYPE_VECTOR;
|
|
else if (op == INSTR_MUL_V)
|
|
self->expression.vtype = TYPE_FLOAT;
|
|
else
|
|
self->expression.vtype = left->expression.vtype;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_binary_delete(ast_binary *self)
|
|
{
|
|
ast_unref(self->left);
|
|
ast_unref(self->right);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
|
|
ast_expression* left, ast_expression* right)
|
|
{
|
|
ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
|
|
|
|
self->opstore = storop;
|
|
self->opbin = op;
|
|
self->dest = left;
|
|
self->source = right;
|
|
|
|
self->expression.vtype = left->expression.vtype;
|
|
if (left->expression.next) {
|
|
self->expression.next = ast_type_copy(ctx, left);
|
|
if (!self->expression.next) {
|
|
ast_delete(self);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
self->expression.next = NULL;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_binstore_delete(ast_binstore *self)
|
|
{
|
|
ast_unref(self->dest);
|
|
ast_unref(self->source);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_unary* ast_unary_new(lex_ctx ctx, int op,
|
|
ast_expression *expr)
|
|
{
|
|
ast_instantiate(ast_unary, ctx, ast_unary_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
|
|
|
|
self->op = op;
|
|
self->operand = expr;
|
|
|
|
if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
|
|
self->expression.vtype = TYPE_FLOAT;
|
|
} else
|
|
asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_unary_delete(ast_unary *self)
|
|
{
|
|
ast_unref(self->operand);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
|
|
{
|
|
ast_instantiate(ast_return, ctx, ast_return_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
|
|
|
|
self->operand = expr;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_return_delete(ast_return *self)
|
|
{
|
|
if (self->operand)
|
|
ast_unref(self->operand);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
|
|
{
|
|
const ast_expression *outtype;
|
|
|
|
ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
|
|
|
|
if (field->expression.vtype != TYPE_FIELD) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
outtype = field->expression.next;
|
|
if (!outtype) {
|
|
mem_d(self);
|
|
/* Error: field has no type... */
|
|
return NULL;
|
|
}
|
|
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
|
|
|
|
self->entity = entity;
|
|
self->field = field;
|
|
|
|
if (!ast_type_adopt(self, outtype)) {
|
|
ast_entfield_delete(self);
|
|
return NULL;
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_entfield_delete(ast_entfield *self)
|
|
{
|
|
ast_unref(self->entity);
|
|
ast_unref(self->field);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
|
|
{
|
|
ast_instantiate(ast_member, ctx, ast_member_delete);
|
|
if (field >= 3) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
if (owner->expression.vtype != TYPE_VECTOR &&
|
|
owner->expression.vtype != TYPE_FIELD) {
|
|
asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
|
|
self->expression.node.keep = true; /* keep */
|
|
|
|
if (owner->expression.vtype == TYPE_VECTOR) {
|
|
self->expression.vtype = TYPE_FLOAT;
|
|
self->expression.next = NULL;
|
|
} else {
|
|
self->expression.vtype = TYPE_FIELD;
|
|
self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
|
|
}
|
|
|
|
self->owner = owner;
|
|
self->field = field;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_member_delete(ast_member *self)
|
|
{
|
|
/* The owner is always an ast_value, which has .keep=true,
|
|
* also: ast_members are usually deleted after the owner, thus
|
|
* this will cause invalid access
|
|
ast_unref(self->owner);
|
|
* once we allow (expression).x to access a vector-member, we need
|
|
* to change this: preferably by creating an alternate ast node for this
|
|
* purpose that is not garbage-collected.
|
|
*/
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
|
|
{
|
|
ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
|
|
if (!ontrue && !onfalse) {
|
|
/* because it is invalid */
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
|
|
|
|
self->cond = cond;
|
|
self->on_true = ontrue;
|
|
self->on_false = onfalse;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_ifthen_delete(ast_ifthen *self)
|
|
{
|
|
ast_unref(self->cond);
|
|
if (self->on_true)
|
|
ast_unref(self->on_true);
|
|
if (self->on_false)
|
|
ast_unref(self->on_false);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
|
|
{
|
|
ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
|
|
/* This time NEITHER must be NULL */
|
|
if (!ontrue || !onfalse) {
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
|
|
|
|
self->cond = cond;
|
|
self->on_true = ontrue;
|
|
self->on_false = onfalse;
|
|
self->phi_out = NULL;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_ternary_delete(ast_ternary *self)
|
|
{
|
|
ast_unref(self->cond);
|
|
ast_unref(self->on_true);
|
|
ast_unref(self->on_false);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_loop* ast_loop_new(lex_ctx ctx,
|
|
ast_expression *initexpr,
|
|
ast_expression *precond,
|
|
ast_expression *postcond,
|
|
ast_expression *increment,
|
|
ast_expression *body)
|
|
{
|
|
ast_instantiate(ast_loop, ctx, ast_loop_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
|
|
|
|
self->initexpr = initexpr;
|
|
self->precond = precond;
|
|
self->postcond = postcond;
|
|
self->increment = increment;
|
|
self->body = body;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_loop_delete(ast_loop *self)
|
|
{
|
|
if (self->initexpr)
|
|
ast_unref(self->initexpr);
|
|
if (self->precond)
|
|
ast_unref(self->precond);
|
|
if (self->postcond)
|
|
ast_unref(self->postcond);
|
|
if (self->increment)
|
|
ast_unref(self->increment);
|
|
if (self->body)
|
|
ast_unref(self->body);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_call* ast_call_new(lex_ctx ctx,
|
|
ast_expression *funcexpr)
|
|
{
|
|
ast_instantiate(ast_call, ctx, ast_call_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
|
|
|
|
MEM_VECTOR_INIT(self, params);
|
|
|
|
self->func = funcexpr;
|
|
|
|
self->expression.vtype = funcexpr->expression.next->expression.vtype;
|
|
if (funcexpr->expression.next->expression.next)
|
|
self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
|
|
|
|
return self;
|
|
}
|
|
MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
|
|
|
|
void ast_call_delete(ast_call *self)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->params_count; ++i)
|
|
ast_unref(self->params[i]);
|
|
MEM_VECTOR_CLEAR(self, params);
|
|
|
|
if (self->func)
|
|
ast_unref(self->func);
|
|
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_store* ast_store_new(lex_ctx ctx, int op,
|
|
ast_expression *dest, ast_expression *source)
|
|
{
|
|
ast_instantiate(ast_store, ctx, ast_store_delete);
|
|
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
|
|
|
|
self->op = op;
|
|
self->dest = dest;
|
|
self->source = source;
|
|
|
|
return self;
|
|
}
|
|
|
|
void ast_store_delete(ast_store *self)
|
|
{
|
|
ast_unref(self->dest);
|
|
ast_unref(self->source);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
ast_block* ast_block_new(lex_ctx ctx)
|
|
{
|
|
ast_instantiate(ast_block, ctx, ast_block_delete);
|
|
ast_expression_init((ast_expression*)self,
|
|
(ast_expression_codegen*)&ast_block_codegen);
|
|
|
|
MEM_VECTOR_INIT(self, locals);
|
|
MEM_VECTOR_INIT(self, exprs);
|
|
MEM_VECTOR_INIT(self, collect);
|
|
|
|
return self;
|
|
}
|
|
MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
|
|
MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
|
|
MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
|
|
|
|
bool ast_block_collect(ast_block *self, ast_expression *expr)
|
|
{
|
|
if (!ast_block_collect_add(self, expr))
|
|
return false;
|
|
expr->expression.node.keep = true;
|
|
return true;
|
|
}
|
|
|
|
void ast_block_delete(ast_block *self)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < self->exprs_count; ++i)
|
|
ast_unref(self->exprs[i]);
|
|
MEM_VECTOR_CLEAR(self, exprs);
|
|
for (i = 0; i < self->locals_count; ++i)
|
|
ast_delete(self->locals[i]);
|
|
MEM_VECTOR_CLEAR(self, locals);
|
|
for (i = 0; i < self->collect_count; ++i)
|
|
ast_delete(self->collect[i]);
|
|
MEM_VECTOR_CLEAR(self, collect);
|
|
ast_expression_delete((ast_expression*)self);
|
|
mem_d(self);
|
|
}
|
|
|
|
bool ast_block_set_type(ast_block *self, ast_expression *from)
|
|
{
|
|
if (self->expression.next)
|
|
ast_delete(self->expression.next);
|
|
self->expression.vtype = from->expression.vtype;
|
|
if (from->expression.next) {
|
|
self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
|
|
if (!self->expression.next)
|
|
return false;
|
|
}
|
|
else
|
|
self->expression.next = NULL;
|
|
return true;
|
|
}
|
|
|
|
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
|
|
{
|
|
ast_instantiate(ast_function, ctx, ast_function_delete);
|
|
|
|
if (!vtype ||
|
|
vtype->isconst ||
|
|
vtype->expression.vtype != TYPE_FUNCTION)
|
|
{
|
|
mem_d(self);
|
|
return NULL;
|
|
}
|
|
|
|
self->vtype = vtype;
|
|
self->name = name ? util_strdup(name) : NULL;
|
|
MEM_VECTOR_INIT(self, blocks);
|
|
|
|
self->labelcount = 0;
|
|
self->builtin = 0;
|
|
|
|
self->ir_func = NULL;
|
|
self->curblock = NULL;
|
|
|
|
self->breakblock = NULL;
|
|
self->continueblock = NULL;
|
|
|
|
vtype->isconst = true;
|
|
vtype->constval.vfunc = self;
|
|
|
|
return self;
|
|
}
|
|
|
|
MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
|
|
|
|
void ast_function_delete(ast_function *self)
|
|
{
|
|
size_t i;
|
|
if (self->name)
|
|
mem_d((void*)self->name);
|
|
if (self->vtype) {
|
|
/* ast_value_delete(self->vtype); */
|
|
self->vtype->isconst = false;
|
|
self->vtype->constval.vfunc = NULL;
|
|
/* We use unref - if it was stored in a global table it is supposed
|
|
* to be deleted from *there*
|
|
*/
|
|
ast_unref(self->vtype);
|
|
}
|
|
for (i = 0; i < self->blocks_count; ++i)
|
|
ast_delete(self->blocks[i]);
|
|
MEM_VECTOR_CLEAR(self, blocks);
|
|
mem_d(self);
|
|
}
|
|
|
|
const char* ast_function_label(ast_function *self, const char *prefix)
|
|
{
|
|
size_t id;
|
|
size_t len;
|
|
char *from;
|
|
|
|
if (!opts_dump)
|
|
return NULL;
|
|
|
|
id = (self->labelcount++);
|
|
len = strlen(prefix);
|
|
|
|
from = self->labelbuf + sizeof(self->labelbuf)-1;
|
|
*from-- = 0;
|
|
do {
|
|
unsigned int digit = id % 10;
|
|
*from = digit + '0';
|
|
id /= 10;
|
|
} while (id);
|
|
memcpy(from - len, prefix, len);
|
|
return from - len;
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/* AST codegen part
|
|
* by convention you must never pass NULL to the 'ir_value **out'
|
|
* parameter. If you really don't care about the output, pass a dummy.
|
|
* But I can't imagine a pituation where the output is truly unnecessary.
|
|
*/
|
|
|
|
bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
/* NOTE: This is the codegen for a variable used in an expression.
|
|
* It is not the codegen to generate the value. For this purpose,
|
|
* ast_local_codegen and ast_global_codegen are to be used before this
|
|
* is executed. ast_function_codegen should take care of its locals,
|
|
* and the ast-user should take care of ast_global_codegen to be used
|
|
* on all the globals.
|
|
*/
|
|
if (!self->ir_v) {
|
|
asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
|
|
return false;
|
|
}
|
|
*out = self->ir_v;
|
|
return true;
|
|
}
|
|
|
|
bool ast_global_codegen(ast_value *self, ir_builder *ir)
|
|
{
|
|
ir_value *v = NULL;
|
|
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
|
|
{
|
|
ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
|
|
if (!func)
|
|
return false;
|
|
func->context = ast_ctx(self);
|
|
func->value->context = ast_ctx(self);
|
|
|
|
self->constval.vfunc->ir_func = func;
|
|
self->ir_v = func->value;
|
|
/* The function is filled later on ast_function_codegen... */
|
|
return true;
|
|
}
|
|
|
|
if (self->expression.vtype == TYPE_FIELD) {
|
|
v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
|
|
if (!v)
|
|
return false;
|
|
v->context = ast_ctx(self);
|
|
if (self->isconst) {
|
|
asterror(ast_ctx(self), "TODO: constant field pointers with value");
|
|
goto error;
|
|
}
|
|
self->ir_v = v;
|
|
return true;
|
|
}
|
|
|
|
v = ir_builder_create_global(ir, self->name, self->expression.vtype);
|
|
if (!v) {
|
|
asterror(ast_ctx(self), "ir_builder_create_global failed");
|
|
return false;
|
|
}
|
|
v->context = ast_ctx(self);
|
|
|
|
if (self->isconst) {
|
|
switch (self->expression.vtype)
|
|
{
|
|
case TYPE_FLOAT:
|
|
if (!ir_value_set_float(v, self->constval.vfloat))
|
|
goto error;
|
|
break;
|
|
case TYPE_VECTOR:
|
|
if (!ir_value_set_vector(v, self->constval.vvec))
|
|
goto error;
|
|
break;
|
|
case TYPE_STRING:
|
|
if (!ir_value_set_string(v, self->constval.vstring))
|
|
goto error;
|
|
break;
|
|
case TYPE_FUNCTION:
|
|
asterror(ast_ctx(self), "global of type function not properly generated");
|
|
goto error;
|
|
/* Cannot generate an IR value for a function,
|
|
* need a pointer pointing to a function rather.
|
|
*/
|
|
default:
|
|
asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* link us to the ir_value */
|
|
self->ir_v = v;
|
|
return true;
|
|
|
|
error: /* clean up */
|
|
ir_value_delete(v);
|
|
return false;
|
|
}
|
|
|
|
bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
|
|
{
|
|
ir_value *v = NULL;
|
|
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
|
|
{
|
|
/* Do we allow local functions? I think not...
|
|
* this is NOT a function pointer atm.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
v = ir_function_create_local(func, self->name, self->expression.vtype, param);
|
|
if (!v)
|
|
return false;
|
|
v->context = ast_ctx(self);
|
|
|
|
/* A constant local... hmmm...
|
|
* I suppose the IR will have to deal with this
|
|
*/
|
|
if (self->isconst) {
|
|
switch (self->expression.vtype)
|
|
{
|
|
case TYPE_FLOAT:
|
|
if (!ir_value_set_float(v, self->constval.vfloat))
|
|
goto error;
|
|
break;
|
|
case TYPE_VECTOR:
|
|
if (!ir_value_set_vector(v, self->constval.vvec))
|
|
goto error;
|
|
break;
|
|
case TYPE_STRING:
|
|
if (!ir_value_set_string(v, self->constval.vstring))
|
|
goto error;
|
|
break;
|
|
default:
|
|
asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* link us to the ir_value */
|
|
self->ir_v = v;
|
|
return true;
|
|
|
|
error: /* clean up */
|
|
ir_value_delete(v);
|
|
return false;
|
|
}
|
|
|
|
bool ast_function_codegen(ast_function *self, ir_builder *ir)
|
|
{
|
|
ir_function *irf;
|
|
ir_value *dummy;
|
|
ast_expression_common *ec;
|
|
size_t i;
|
|
|
|
irf = self->ir_func;
|
|
if (!irf) {
|
|
asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
|
|
return false;
|
|
}
|
|
|
|
/* fill the parameter list */
|
|
ec = &self->vtype->expression;
|
|
for (i = 0; i < ec->params_count; ++i)
|
|
{
|
|
if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
|
|
return false;
|
|
if (!self->builtin) {
|
|
if (!ast_local_codegen(ec->params[i], self->ir_func, true))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (self->builtin) {
|
|
irf->builtin = self->builtin;
|
|
return true;
|
|
}
|
|
|
|
if (!self->blocks_count) {
|
|
asterror(ast_ctx(self), "function `%s` has no body", self->name);
|
|
return false;
|
|
}
|
|
|
|
self->curblock = ir_function_create_block(irf, "entry");
|
|
if (!self->curblock) {
|
|
asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < self->blocks_count; ++i) {
|
|
ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
|
|
if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
|
|
return false;
|
|
}
|
|
|
|
/* TODO: check return types */
|
|
if (!self->curblock->is_return)
|
|
{
|
|
return ir_block_create_return(self->curblock, NULL);
|
|
/* From now on the parser has to handle this situation */
|
|
#if 0
|
|
if (!self->vtype->expression.next ||
|
|
self->vtype->expression.next->expression.vtype == TYPE_VOID)
|
|
{
|
|
return ir_block_create_return(self->curblock, NULL);
|
|
}
|
|
else
|
|
{
|
|
/* error("missing return"); */
|
|
asterror(ast_ctx(self), "function `%s` missing return value", self->name);
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Note, you will not see ast_block_codegen generate ir_blocks.
|
|
* To the AST and the IR, blocks are 2 different things.
|
|
* In the AST it represents a block of code, usually enclosed in
|
|
* curly braces {...}.
|
|
* While in the IR it represents a block in terms of control-flow.
|
|
*/
|
|
bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
size_t i;
|
|
|
|
/* We don't use this
|
|
* Note: an ast-representation using the comma-operator
|
|
* of the form: (a, b, c) = x should not assign to c...
|
|
*/
|
|
(void)lvalue;
|
|
if (self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
/* output is NULL at first, we'll have each expression
|
|
* assign to out output, thus, a comma-operator represention
|
|
* using an ast_block will return the last generated value,
|
|
* so: (b, c) + a executed both b and c, and returns c,
|
|
* which is then added to a.
|
|
*/
|
|
*out = NULL;
|
|
|
|
/* generate locals */
|
|
for (i = 0; i < self->locals_count; ++i)
|
|
{
|
|
if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
|
|
if (opts_debug)
|
|
asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < self->exprs_count; ++i)
|
|
{
|
|
ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
|
|
if (!(*gen)(self->exprs[i], func, false, out))
|
|
return false;
|
|
}
|
|
|
|
self->expression.outr = *out;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *left, *right;
|
|
|
|
if (lvalue && self->expression.outl) {
|
|
*out = self->expression.outl;
|
|
return true;
|
|
}
|
|
|
|
if (!lvalue && self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->dest->expression.codegen;
|
|
/* lvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
|
|
return false;
|
|
self->expression.outl = left;
|
|
|
|
cgen = self->source->expression.codegen;
|
|
/* rvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
|
|
return false;
|
|
|
|
if (!ir_block_create_store_op(func->curblock, self->op, left, right))
|
|
return false;
|
|
self->expression.outr = right;
|
|
|
|
/* Theoretically, an assinment returns its left side as an
|
|
* lvalue, if we don't need an lvalue though, we return
|
|
* the right side as an rvalue, otherwise we have to
|
|
* somehow know whether or not we need to dereference the pointer
|
|
* on the left side - that is: OP_LOAD if it was an address.
|
|
* Also: in original QC we cannot OP_LOADP *anyway*.
|
|
*/
|
|
*out = (lvalue ? left : right);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *left, *right;
|
|
|
|
/* In the context of a binary operation, we can disregard
|
|
* the lvalue flag.
|
|
*/
|
|
(void)lvalue;
|
|
if (self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->left->expression.codegen;
|
|
/* lvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
|
|
return false;
|
|
|
|
cgen = self->right->expression.codegen;
|
|
/* rvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
|
|
return false;
|
|
|
|
*out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
|
|
self->op, left, right);
|
|
if (!*out)
|
|
return false;
|
|
self->expression.outr = *out;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *leftl, *leftr, *right, *bin;
|
|
|
|
if (lvalue && self->expression.outl) {
|
|
*out = self->expression.outl;
|
|
return true;
|
|
}
|
|
|
|
if (!lvalue && self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
/* for a binstore we need both an lvalue and an rvalue for the left side */
|
|
/* rvalue of destination! */
|
|
cgen = self->dest->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
|
|
return false;
|
|
|
|
/* source as rvalue only */
|
|
cgen = self->source->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
|
|
return false;
|
|
|
|
/* now the binary */
|
|
bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
|
|
self->opbin, leftr, right);
|
|
self->expression.outr = bin;
|
|
|
|
/* now store them */
|
|
cgen = self->dest->expression.codegen;
|
|
/* lvalue of destination */
|
|
if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
|
|
return false;
|
|
self->expression.outl = leftl;
|
|
|
|
if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
|
|
return false;
|
|
self->expression.outr = bin;
|
|
|
|
/* Theoretically, an assinment returns its left side as an
|
|
* lvalue, if we don't need an lvalue though, we return
|
|
* the right side as an rvalue, otherwise we have to
|
|
* somehow know whether or not we need to dereference the pointer
|
|
* on the left side - that is: OP_LOAD if it was an address.
|
|
* Also: in original QC we cannot OP_LOADP *anyway*.
|
|
*/
|
|
*out = (lvalue ? leftl : bin);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *operand;
|
|
|
|
/* In the context of a unary operation, we can disregard
|
|
* the lvalue flag.
|
|
*/
|
|
(void)lvalue;
|
|
if (self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->operand->expression.codegen;
|
|
/* lvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
|
|
return false;
|
|
|
|
*out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
|
|
self->op, operand);
|
|
if (!*out)
|
|
return false;
|
|
self->expression.outr = *out;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *operand;
|
|
|
|
/* In the context of a return operation, we can disregard
|
|
* the lvalue flag.
|
|
*/
|
|
(void)lvalue;
|
|
if (self->expression.outr) {
|
|
asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
|
|
return false;
|
|
}
|
|
self->expression.outr = (ir_value*)1;
|
|
|
|
if (self->operand) {
|
|
cgen = self->operand->expression.codegen;
|
|
/* lvalue! */
|
|
if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
|
|
return false;
|
|
|
|
if (!ir_block_create_return(func->curblock, operand))
|
|
return false;
|
|
} else {
|
|
if (!ir_block_create_return(func->curblock, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *ent, *field;
|
|
|
|
/* This function needs to take the 'lvalue' flag into account!
|
|
* As lvalue we provide a field-pointer, as rvalue we provide the
|
|
* value in a temp.
|
|
*/
|
|
|
|
if (lvalue && self->expression.outl) {
|
|
*out = self->expression.outl;
|
|
return true;
|
|
}
|
|
|
|
if (!lvalue && self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->entity->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
|
|
return false;
|
|
|
|
cgen = self->field->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
|
|
return false;
|
|
|
|
if (lvalue) {
|
|
/* address! */
|
|
*out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
|
|
ent, field);
|
|
} else {
|
|
*out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
|
|
ent, field, self->expression.vtype);
|
|
}
|
|
if (!*out) {
|
|
asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
|
|
(lvalue ? "ADDRESS" : "FIELD"),
|
|
type_name[self->expression.vtype]);
|
|
return false;
|
|
}
|
|
|
|
if (lvalue)
|
|
self->expression.outl = *out;
|
|
else
|
|
self->expression.outr = *out;
|
|
|
|
/* Hm that should be it... */
|
|
return true;
|
|
}
|
|
|
|
bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value *vec;
|
|
|
|
/* in QC this is always an lvalue */
|
|
(void)lvalue;
|
|
if (self->expression.outl) {
|
|
*out = self->expression.outl;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->owner->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
|
|
return false;
|
|
|
|
if (vec->vtype != TYPE_VECTOR &&
|
|
!(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
*out = ir_value_vector_member(vec, self->field);
|
|
self->expression.outl = *out;
|
|
|
|
return (*out != NULL);
|
|
}
|
|
|
|
bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
|
|
ir_value *condval;
|
|
ir_value *dummy;
|
|
|
|
ir_block *cond = func->curblock;
|
|
ir_block *ontrue;
|
|
ir_block *onfalse;
|
|
ir_block *ontrue_endblock;
|
|
ir_block *onfalse_endblock;
|
|
ir_block *merge;
|
|
|
|
/* We don't output any value, thus also don't care about r/lvalue */
|
|
(void)out;
|
|
(void)lvalue;
|
|
|
|
if (self->expression.outr) {
|
|
asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
|
|
return false;
|
|
}
|
|
self->expression.outr = (ir_value*)1;
|
|
|
|
/* generate the condition */
|
|
func->curblock = cond;
|
|
cgen = self->cond->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
|
|
return false;
|
|
|
|
/* on-true path */
|
|
|
|
if (self->on_true) {
|
|
/* create on-true block */
|
|
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
|
|
if (!ontrue)
|
|
return false;
|
|
|
|
/* enter the block */
|
|
func->curblock = ontrue;
|
|
|
|
/* generate */
|
|
cgen = self->on_true->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
|
|
return false;
|
|
|
|
/* we now need to work from the current endpoint */
|
|
ontrue_endblock = func->curblock;
|
|
} else
|
|
ontrue = NULL;
|
|
|
|
/* on-false path */
|
|
if (self->on_false) {
|
|
/* create on-false block */
|
|
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
|
|
if (!onfalse)
|
|
return false;
|
|
|
|
/* enter the block */
|
|
func->curblock = onfalse;
|
|
|
|
/* generate */
|
|
cgen = self->on_false->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
|
|
return false;
|
|
|
|
/* we now need to work from the current endpoint */
|
|
onfalse_endblock = func->curblock;
|
|
} else
|
|
onfalse = NULL;
|
|
|
|
/* Merge block were they all merge in to */
|
|
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
|
|
if (!merge)
|
|
return false;
|
|
|
|
/* add jumps ot the merge block */
|
|
if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
|
|
return false;
|
|
if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
|
|
return false;
|
|
|
|
/* we create the if here, that way all blocks are ordered :)
|
|
*/
|
|
if (!ir_block_create_if(cond, condval,
|
|
(ontrue ? ontrue : merge),
|
|
(onfalse ? onfalse : merge)))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Now enter the merge block */
|
|
func->curblock = merge;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
|
|
ir_value *condval;
|
|
ir_value *trueval, *falseval;
|
|
ir_instr *phi;
|
|
|
|
ir_block *cond = func->curblock;
|
|
ir_block *ontrue;
|
|
ir_block *onfalse;
|
|
ir_block *merge;
|
|
|
|
/* Ternary can never create an lvalue... */
|
|
if (lvalue)
|
|
return false;
|
|
|
|
/* In theory it shouldn't be possible to pass through a node twice, but
|
|
* in case we add any kind of optimization pass for the AST itself, it
|
|
* may still happen, thus we remember a created ir_value and simply return one
|
|
* if it already exists.
|
|
*/
|
|
if (self->phi_out) {
|
|
*out = self->phi_out;
|
|
return true;
|
|
}
|
|
|
|
/* In the following, contraty to ast_ifthen, we assume both paths exist. */
|
|
|
|
/* generate the condition */
|
|
func->curblock = cond;
|
|
cgen = self->cond->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
|
|
return false;
|
|
|
|
/* create on-true block */
|
|
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
|
|
if (!ontrue)
|
|
return false;
|
|
else
|
|
{
|
|
/* enter the block */
|
|
func->curblock = ontrue;
|
|
|
|
/* generate */
|
|
cgen = self->on_true->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
|
|
return false;
|
|
}
|
|
|
|
/* create on-false block */
|
|
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
|
|
if (!onfalse)
|
|
return false;
|
|
else
|
|
{
|
|
/* enter the block */
|
|
func->curblock = onfalse;
|
|
|
|
/* generate */
|
|
cgen = self->on_false->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
|
|
return false;
|
|
}
|
|
|
|
/* create merge block */
|
|
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
|
|
if (!merge)
|
|
return false;
|
|
/* jump to merge block */
|
|
if (!ir_block_create_jump(ontrue, merge))
|
|
return false;
|
|
if (!ir_block_create_jump(onfalse, merge))
|
|
return false;
|
|
|
|
/* create if instruction */
|
|
if (!ir_block_create_if(cond, condval, ontrue, onfalse))
|
|
return false;
|
|
|
|
/* Now enter the merge block */
|
|
func->curblock = merge;
|
|
|
|
/* Here, now, we need a PHI node
|
|
* but first some sanity checking...
|
|
*/
|
|
if (trueval->vtype != falseval->vtype) {
|
|
/* error("ternary with different types on the two sides"); */
|
|
return false;
|
|
}
|
|
|
|
/* create PHI */
|
|
phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
|
|
if (!phi ||
|
|
!ir_phi_add(phi, ontrue, trueval) ||
|
|
!ir_phi_add(phi, onfalse, falseval))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
self->phi_out = ir_phi_value(phi);
|
|
*out = self->phi_out;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
|
|
ir_value *dummy = NULL;
|
|
ir_value *precond = NULL;
|
|
ir_value *postcond = NULL;
|
|
|
|
/* Since we insert some jumps "late" so we have blocks
|
|
* ordered "nicely", we need to keep track of the actual end-blocks
|
|
* of expressions to add the jumps to.
|
|
*/
|
|
ir_block *bbody = NULL, *end_bbody = NULL;
|
|
ir_block *bprecond = NULL, *end_bprecond = NULL;
|
|
ir_block *bpostcond = NULL, *end_bpostcond = NULL;
|
|
ir_block *bincrement = NULL, *end_bincrement = NULL;
|
|
ir_block *bout = NULL, *bin = NULL;
|
|
|
|
/* let's at least move the outgoing block to the end */
|
|
size_t bout_id;
|
|
|
|
/* 'break' and 'continue' need to be able to find the right blocks */
|
|
ir_block *bcontinue = NULL;
|
|
ir_block *bbreak = NULL;
|
|
|
|
ir_block *old_bcontinue = NULL;
|
|
ir_block *old_bbreak = NULL;
|
|
|
|
ir_block *tmpblock = NULL;
|
|
|
|
(void)lvalue;
|
|
(void)out;
|
|
|
|
if (self->expression.outr) {
|
|
asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
|
|
return false;
|
|
}
|
|
self->expression.outr = (ir_value*)1;
|
|
|
|
/* NOTE:
|
|
* Should we ever need some kind of block ordering, better make this function
|
|
* move blocks around than write a block ordering algorithm later... after all
|
|
* the ast and ir should work together, not against each other.
|
|
*/
|
|
|
|
/* initexpr doesn't get its own block, it's pointless, it could create more blocks
|
|
* anyway if for example it contains a ternary.
|
|
*/
|
|
if (self->initexpr)
|
|
{
|
|
cgen = self->initexpr->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
|
|
return false;
|
|
}
|
|
|
|
/* Store the block from which we enter this chaos */
|
|
bin = func->curblock;
|
|
|
|
/* The pre-loop condition needs its own block since we
|
|
* need to be able to jump to the start of that expression.
|
|
*/
|
|
if (self->precond)
|
|
{
|
|
bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
|
|
if (!bprecond)
|
|
return false;
|
|
|
|
/* the pre-loop-condition the least important place to 'continue' at */
|
|
bcontinue = bprecond;
|
|
|
|
/* enter */
|
|
func->curblock = bprecond;
|
|
|
|
/* generate */
|
|
cgen = self->precond->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
|
|
return false;
|
|
|
|
end_bprecond = func->curblock;
|
|
} else {
|
|
bprecond = end_bprecond = NULL;
|
|
}
|
|
|
|
/* Now the next blocks won't be ordered nicely, but we need to
|
|
* generate them this early for 'break' and 'continue'.
|
|
*/
|
|
if (self->increment) {
|
|
bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
|
|
if (!bincrement)
|
|
return false;
|
|
bcontinue = bincrement; /* increment comes before the pre-loop-condition */
|
|
} else {
|
|
bincrement = end_bincrement = NULL;
|
|
}
|
|
|
|
if (self->postcond) {
|
|
bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
|
|
if (!bpostcond)
|
|
return false;
|
|
bcontinue = bpostcond; /* postcond comes before the increment */
|
|
} else {
|
|
bpostcond = end_bpostcond = NULL;
|
|
}
|
|
|
|
bout_id = func->ir_func->blocks_count;
|
|
bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
|
|
if (!bout)
|
|
return false;
|
|
bbreak = bout;
|
|
|
|
/* The loop body... */
|
|
if (self->body)
|
|
{
|
|
bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
|
|
if (!bbody)
|
|
return false;
|
|
|
|
/* enter */
|
|
func->curblock = bbody;
|
|
|
|
old_bbreak = func->breakblock;
|
|
old_bcontinue = func->continueblock;
|
|
func->breakblock = bbreak;
|
|
func->continueblock = bcontinue;
|
|
|
|
/* generate */
|
|
cgen = self->body->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
|
|
return false;
|
|
|
|
end_bbody = func->curblock;
|
|
func->breakblock = old_bbreak;
|
|
func->continueblock = old_bcontinue;
|
|
}
|
|
|
|
/* post-loop-condition */
|
|
if (self->postcond)
|
|
{
|
|
/* enter */
|
|
func->curblock = bpostcond;
|
|
|
|
/* generate */
|
|
cgen = self->postcond->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
|
|
return false;
|
|
|
|
end_bpostcond = func->curblock;
|
|
}
|
|
|
|
/* The incrementor */
|
|
if (self->increment)
|
|
{
|
|
/* enter */
|
|
func->curblock = bincrement;
|
|
|
|
/* generate */
|
|
cgen = self->increment->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
|
|
return false;
|
|
|
|
end_bincrement = func->curblock;
|
|
}
|
|
|
|
/* In any case now, we continue from the outgoing block */
|
|
func->curblock = bout;
|
|
|
|
/* Now all blocks are in place */
|
|
/* From 'bin' we jump to whatever comes first */
|
|
if (bprecond) tmpblock = bprecond;
|
|
else if (bbody) tmpblock = bbody;
|
|
else if (bpostcond) tmpblock = bpostcond;
|
|
else tmpblock = bout;
|
|
if (!ir_block_create_jump(bin, tmpblock))
|
|
return false;
|
|
|
|
/* From precond */
|
|
if (bprecond)
|
|
{
|
|
ir_block *ontrue, *onfalse;
|
|
if (bbody) ontrue = bbody;
|
|
else if (bincrement) ontrue = bincrement;
|
|
else if (bpostcond) ontrue = bpostcond;
|
|
else ontrue = bprecond;
|
|
onfalse = bout;
|
|
if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
|
|
return false;
|
|
}
|
|
|
|
/* from body */
|
|
if (bbody)
|
|
{
|
|
if (bincrement) tmpblock = bincrement;
|
|
else if (bpostcond) tmpblock = bpostcond;
|
|
else if (bprecond) tmpblock = bprecond;
|
|
else tmpblock = bout;
|
|
if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
|
|
return false;
|
|
}
|
|
|
|
/* from increment */
|
|
if (bincrement)
|
|
{
|
|
if (bpostcond) tmpblock = bpostcond;
|
|
else if (bprecond) tmpblock = bprecond;
|
|
else if (bbody) tmpblock = bbody;
|
|
else tmpblock = bout;
|
|
if (!ir_block_create_jump(end_bincrement, tmpblock))
|
|
return false;
|
|
}
|
|
|
|
/* from postcond */
|
|
if (bpostcond)
|
|
{
|
|
ir_block *ontrue, *onfalse;
|
|
if (bprecond) ontrue = bprecond;
|
|
else if (bbody) ontrue = bbody;
|
|
else if (bincrement) ontrue = bincrement;
|
|
else ontrue = bpostcond;
|
|
onfalse = bout;
|
|
if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
|
|
return false;
|
|
}
|
|
|
|
/* Move 'bout' to the end */
|
|
if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
|
|
!ir_function_blocks_add(func->ir_func, bout))
|
|
{
|
|
ir_block_delete(bout);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
|
|
{
|
|
ast_expression_codegen *cgen;
|
|
ir_value_vector params;
|
|
ir_instr *callinstr;
|
|
size_t i;
|
|
|
|
ir_value *funval = NULL;
|
|
|
|
/* return values are never lvalues */
|
|
(void)lvalue;
|
|
|
|
if (self->expression.outr) {
|
|
*out = self->expression.outr;
|
|
return true;
|
|
}
|
|
|
|
cgen = self->func->expression.codegen;
|
|
if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
|
|
return false;
|
|
if (!funval)
|
|
return false;
|
|
|
|
MEM_VECTOR_INIT(¶ms, v);
|
|
|
|
/* parameters */
|
|
for (i = 0; i < self->params_count; ++i)
|
|
{
|
|
ir_value *param;
|
|
ast_expression *expr = self->params[i];
|
|
|
|
cgen = expr->expression.codegen;
|
|
if (!(*cgen)(expr, func, false, ¶m))
|
|
goto error;
|
|
if (!param)
|
|
goto error;
|
|
if (!ir_value_vector_v_add(¶ms, param))
|
|
goto error;
|
|
}
|
|
|
|
callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
|
|
if (!callinstr)
|
|
goto error;
|
|
|
|
for (i = 0; i < params.v_count; ++i) {
|
|
if (!ir_call_param(callinstr, params.v[i]))
|
|
goto error;
|
|
}
|
|
|
|
*out = ir_call_value(callinstr);
|
|
self->expression.outr = *out;
|
|
|
|
MEM_VECTOR_CLEAR(¶ms, v);
|
|
return true;
|
|
error:
|
|
MEM_VECTOR_CLEAR(¶ms, v);
|
|
return false;
|
|
}
|