gmqcc/ast.c
2012-05-02 23:11:39 +02:00

578 lines
16 KiB
C

/*
* Copyright (C) 2012
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
#include "ast.h"
#define ast_instantiate(T, ctx, destroyfn) \
T* self = (T*)mem_a(sizeof(T)); \
if (!self) { \
return NULL; \
} \
ast_node_init((ast_node*)self, ctx); \
( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
/* It must not be possible to get here. */
static void _ast_node_destroy(ast_node *self)
{
fprintf(stderr, "ast node missing destroy()\n");
abort();
}
/* Initialize main ast node aprts */
static void ast_node_init(ast_node *self, lex_ctx ctx)
{
self->node.context = ctx;
self->node.destroy = &_ast_node_destroy;
self->node.keep = false;
}
/* General expression initialization */
static void ast_expression_init(ast_expression *self,
ast_expression_codegen *codegen)
{
self->expression.codegen = codegen;
}
ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
{
ast_instantiate(ast_value, ctx, ast_value_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_value_codegen);
self->expression.node.keep = true; /* keep */
self->name = name ? util_strdup(name) : NULL;
self->vtype = t;
self->next = NULL;
MEM_VECTOR_INIT(self, params);
self->isconst = false;
memset(&self->constval, 0, sizeof(self->constval));
self->ir_v = NULL;
return self;
}
MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
void ast_value_delete(ast_value* self)
{
size_t i;
if (self->name)
mem_d((void*)self->name);
for (i = 0; i < self->params_count; ++i)
ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
MEM_VECTOR_CLEAR(self, params);
if (self->next) /* delete, not unref, types are always copied */
ast_delete(self->next);
if (self->isconst) {
switch (self->vtype)
{
case TYPE_STRING:
mem_d((void*)self->constval.vstring);
break;
case TYPE_FUNCTION:
/* unlink us from the function node */
self->constval.vfunc->vtype = NULL;
break;
/* NOTE: delete function? currently collected in
* the parser structure
*/
default:
break;
}
}
mem_d(self);
}
bool ast_value_set_name(ast_value *self, const char *name)
{
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
return !!self->name;
}
ast_binary* ast_binary_new(lex_ctx ctx, int op,
ast_expression* left, ast_expression* right)
{
ast_instantiate(ast_binary, ctx, ast_binary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
self->op = op;
self->left = left;
self->right = right;
return self;
}
void ast_binary_delete(ast_binary *self)
{
ast_unref(self->left);
ast_unref(self->right);
mem_d(self);
}
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
{
ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
self->entity = entity;
self->field = field;
return self;
}
void ast_entfield_delete(ast_entfield *self)
{
ast_unref(self->entity);
ast_unref(self->field);
mem_d(self);
}
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
if (!ontrue && !onfalse) {
/* because it is invalid */
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
return self;
}
void ast_ifthen_delete(ast_ifthen *self)
{
ast_unref(self->cond);
ast_unref(self->on_true);
ast_unref(self->on_false);
mem_d(self);
}
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
/* This time NEITHER must be NULL */
if (!ontrue || !onfalse) {
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
self->phi_out = NULL;
return self;
}
void ast_ternary_delete(ast_ternary *self)
{
ast_unref(self->cond);
ast_unref(self->on_true);
ast_unref(self->on_false);
mem_d(self);
}
ast_store* ast_store_new(lex_ctx ctx, int op,
ast_value *dest, ast_expression *source)
{
ast_instantiate(ast_store, ctx, ast_store_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
self->op = op;
self->dest = dest;
self->source = source;
return self;
}
void ast_store_delete(ast_store *self)
{
ast_unref(self->dest);
ast_unref(self->source);
mem_d(self);
}
ast_block* ast_block_new(lex_ctx ctx)
{
ast_instantiate(ast_block, ctx, ast_block_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_block_codegen);
MEM_VECTOR_INIT(self, locals);
MEM_VECTOR_INIT(self, exprs);
return self;
}
MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
void ast_block_delete(ast_block *self)
{
size_t i;
for (i = 0; i < self->exprs_count; ++i)
ast_unref(self->exprs[i]);
MEM_VECTOR_CLEAR(self, exprs);
for (i = 0; i < self->locals_count; ++i)
ast_delete(self->locals[i]);
MEM_VECTOR_CLEAR(self, locals);
mem_d(self);
}
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
{
ast_instantiate(ast_function, ctx, ast_function_delete);
if (!vtype ||
vtype->isconst ||
vtype->vtype != TYPE_FUNCTION)
{
mem_d(self);
return NULL;
}
self->vtype = vtype;
self->name = name ? util_strdup(name) : NULL;
MEM_VECTOR_INIT(self, blocks);
self->labelcount = 0;
self->ir_func = NULL;
self->curblock = NULL;
vtype->isconst = true;
vtype->constval.vfunc = self;
return self;
}
MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
void ast_function_delete(ast_function *self)
{
size_t i;
if (self->name)
mem_d((void*)self->name);
if (self->vtype) {
/* ast_value_delete(self->vtype); */
self->vtype->isconst = false;
self->vtype->constval.vfunc = NULL;
/* We use unref - if it was stored in a global table it is supposed
* to be deleted from *there*
*/
ast_unref(self->vtype);
}
for (i = 0; i < self->blocks_count; ++i)
ast_delete(self->blocks[i]);
MEM_VECTOR_CLEAR(self, blocks);
mem_d(self);
}
const char* ast_function_label(ast_function *self)
{
size_t id = (self->labelcount++);
sprintf(self->labelbuf, "label%8u", (unsigned int)id);
return self->labelbuf;
}
/*********************************************************************/
/* AST codegen part
* by convention you must never pass NULL to the 'ir_value **out'
* parameter. If you really don't care about the output, pass a dummy.
* But I can't imagine a pituation where the output is truly unnecessary.
*/
bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
{
/* NOTE: This is the codegen for a variable used in an expression.
* It is not the codegen to generate the value. For this purpose,
* ast_local_codegen and ast_global_codegen are to be used before this
* is executed. ast_function_codegen should take care of its locals,
* and the ast-user should take care of ast_global_codegen to be used
* on all the globals.
*/
if (!self->ir_v)
return false;
*out = self->ir_v;
return true;
}
bool ast_global_codegen(ast_value *self, ir_builder *ir)
{
ir_value *v = NULL;
if (self->isconst && self->vtype == TYPE_FUNCTION)
{
ir_function *func = ir_builder_create_function(ir, self->name);
if (!func)
return false;
self->constval.vfunc->ir_func = func;
/* The function is filled later on ast_function_codegen... */
return true;
}
v = ir_builder_create_global(ir, self->name, self->vtype);
if (!v)
return false;
if (self->isconst) {
switch (self->vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
case TYPE_FUNCTION:
/* Cannot generate an IR value for a function,
* need a pointer pointing to a function rather.
*/
goto error;
default:
printf("TODO: global constant type %i\n", self->vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_local_codegen(ast_value *self, ir_function *func)
{
ir_value *v = NULL;
if (self->isconst && self->vtype == TYPE_FUNCTION)
{
/* Do we allow local functions? I think not...
* this is NOT a function pointer atm.
*/
return false;
}
v = ir_function_create_local(func, self->name, self->vtype);
if (!v)
return false;
/* A constant local... hmmm...
* I suppose the IR will have to deal with this
*/
if (self->isconst) {
switch (self->vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
default:
printf("TODO: global constant type %i\n", self->vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_function_codegen(ast_function *self, ir_builder *ir)
{
ir_function *irf;
ir_value *dummy;
size_t i;
irf = self->ir_func;
if (!irf) {
printf("ast_function's related ast_value was not generated yet\n");
return false;
}
self->curblock = ir_function_create_block(irf, "entry");
if (!self->curblock)
return false;
for (i = 0; i < self->blocks_count; ++i) {
ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
return false;
}
return true;
}
/* Note, you will not see ast_block_codegen generate ir_blocks.
* To the AST and the IR, blocks are 2 different things.
* In the AST it represents a block of code, usually enclosed in
* curly braces {...}.
* While in the IR it represents a block in terms of control-flow.
*/
bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
{
size_t i;
/* We don't use this
* Note: an ast-representation using the comma-operator
* of the form: (a, b, c) = x should not assign to c...
*/
(void)lvalue;
/* output is NULL at first, we'll have each expression
* assign to out output, thus, a comma-operator represention
* using an ast_block will return the last generated value,
* so: (b, c) + a executed both b and c, and returns c,
* which is then added to a.
*/
*out = NULL;
/* generate locals */
for (i = 0; i < self->locals_count; ++i)
{
if (!ast_local_codegen(self->locals[i], func->ir_func))
return false;
}
for (i = 0; i < self->exprs_count; ++i)
{
ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
if (!(*gen)(self->exprs[i], func, false, out))
return false;
}
return true;
}
bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
cgen = self->dest->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
return false;
cgen = self->source->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
if (!ir_block_create_store_op(func->curblock, self->op, left, right))
return false;
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? left : right);
return true;
}
bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
/* In the context of a binary operation, we can disregard
* the lvalue flag.
*/
(void)lvalue;
cgen = self->left->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
return false;
cgen = self->right->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
return false;
*out = ir_block_create_binop(func->curblock, ast_function_label(func),
self->op, left, right);
if (!*out)
return false;
return true;
}
bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
{
return false;
}
bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
{
if (out) *out = NULL;
return false;
}
bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
{
/* In theory it shouldn't be possible to pass through a node twice, but
* in case we add any kind of optimization pass for the AST itself, it
* may still happen, thus we remember a created ir_value and simply return one
* if it already exists.
*/
if (self->phi_out) {
*out = self->phi_out;
return true;
}
return false;
}