gmqcc/fold.cpp
2017-07-23 10:11:31 +02:00

1656 lines
54 KiB
C++

#include <string.h>
#include <math.h>
#include "fold.h"
#include "ast.h"
#include "ir.h"
#include "parser.h"
#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024
/* The options to use for inexact and arithmetic exceptions */
#define FOLD_ROUNDING SFLOAT_ROUND_NEAREST_EVEN
#define FOLD_TINYNESS SFLOAT_TBEFORE
/*
* Comparing float values is an unsafe operation when the operands to the
* comparison are floating point values that are inexact. For instance 1/3 is an
* inexact value. The FPU is meant to raise exceptions when these sorts of things
* happen, including division by zero, underflows and overflows. The C standard
* library provides us with the <fenv.h> header to gain access to the floating-
* point environment and lets us set the rounding mode and check for these exceptions.
* The problem is the standard C library allows an implementation to leave these
* stubbed out and does not require they be implemented. Furthermore, depending
* on implementations there is no control over the FPU. This is an IEE 754
* conforming implementation in software to compensate.
*/
typedef uint32_t sfloat_t;
union sfloat_cast_t {
qcfloat_t f;
sfloat_t s;
};
/* Exception flags */
enum sfloat_exceptionflags_t {
SFLOAT_NOEXCEPT = 0,
SFLOAT_INVALID = 1,
SFLOAT_DIVBYZERO = 4,
SFLOAT_OVERFLOW = 8,
SFLOAT_UNDERFLOW = 16,
SFLOAT_INEXACT = 32
};
/* Rounding modes */
enum sfloat_roundingmode_t {
SFLOAT_ROUND_NEAREST_EVEN,
SFLOAT_ROUND_DOWN,
SFLOAT_ROUND_UP,
SFLOAT_ROUND_TO_ZERO
};
/* Underflow tininess-detection mode */
enum sfloat_tdetect_t {
SFLOAT_TAFTER,
SFLOAT_TBEFORE
};
struct sfloat_state_t {
sfloat_roundingmode_t roundingmode;
sfloat_exceptionflags_t exceptionflags;
sfloat_tdetect_t tiny;
};
/* Counts the number of leading zero bits before the most-significand one bit. */
#ifdef _MSC_VER
/* MSVC has an intrinsic for this */
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
int r = 0;
_BitScanForward(&r, x);
return r;
}
# define SFLOAT_CLZ(X, SUB) \
(sfloat_clz((X)) - (SUB))
#elif defined(__GNUC__) || defined(__CLANG__)
/* Clang and GCC have a builtin for this */
# define SFLOAT_CLZ(X, SUB) \
(__builtin_clz((X)) - (SUB))
#else
/* Native fallback */
static GMQCC_INLINE uint32_t sfloat_popcnt(uint32_t x) {
x -= ((x >> 1) & 0x55555555);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0F0F0F0F);
x += x >> 8;
x += x >> 16;
return x & 0x0000003F;
}
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return 32 - sfloat_popcnt(x);
}
# define SFLOAT_CLZ(X, SUB) \
(sfloat_clz((X) - (SUB)))
#endif
/* The value of a NaN */
#define SFLOAT_NAN 0xFFFFFFFF
/* Test if NaN */
#define SFLOAT_ISNAN(A) \
(0xFF000000 < (uint32_t)((A) << 1))
/* Test if signaling NaN */
#define SFLOAT_ISSNAN(A) \
(((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF))
/* Raise exception */
#define SFLOAT_RAISE(STATE, FLAGS) \
((STATE)->exceptionflags = (sfloat_exceptionflags_t)((STATE)->exceptionflags | (FLAGS)))
/*
* Shifts `A' right by the number of bits given in `COUNT'. If any non-zero bits
* are shifted off they are forced into the least significand bit of the result
* by setting it to one. As a result of this, the value of `COUNT' can be
* arbitrarily large; if `COUNT' is greater than 32, the result will be either
* zero or one, depending on whether `A' is a zero or non-zero. The result is
* stored into the value pointed by `Z'.
*/
#define SFLOAT_SHIFT(SIZE, A, COUNT, Z) \
*(Z) = ((COUNT) == 0) \
? 1 \
: (((COUNT) < (SIZE)) \
? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \
: ((A) != 0))
/* Extract fractional component */
#define SFLOAT_EXTRACT_FRAC(X) \
((uint32_t)((X) & 0x007FFFFF))
/* Extract exponent component */
#define SFLOAT_EXTRACT_EXP(X) \
((int16_t)((X) >> 23) & 0xFF)
/* Extract sign bit */
#define SFLOAT_EXTRACT_SIGN(X) \
((X) >> 31)
/*
* Normalizes the subnormal value represented by the denormalized significand
* `SA'. The normalized exponent and significand are stored at the locations
* pointed by `Z' and `SZ' respectively.
*/
#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \
(void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(Z) = 1 - SFLOAT_CLZ((SA), 8))
/*
* Packs the sign `SIGN', exponent `EXP' and significand `SIG' into the value
* giving the result.
*
* After the shifting into their proper positions, the fields are added together
* to form the result. This means any integer portion of `SIG' will be added
* to the exponent. Similarly, because a properly normalized significand will
* always have an integer portion equal to one, the exponent input `EXP' should
* be one less than the desired result exponent whenever the significant input
* `SIG' is a complete, normalized significand.
*/
#define SFLOAT_PACK(SIGN, EXP, SIG) \
(sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG))
/*
* Takes two values `a' and `b', one of which is a NaN, and returns the appropriate
* NaN result. If either `a' or `b' is a signaling NaN than an invalid exception is
* raised.
*/
static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool isnan_a = SFLOAT_ISNAN(a);
bool issnan_a = SFLOAT_ISSNAN(a);
bool isnan_b = SFLOAT_ISNAN(b);
bool issnan_b = SFLOAT_ISSNAN(b);
a |= 0x00400000;
b |= 0x00400000;
if (issnan_a | issnan_b)
SFLOAT_RAISE(state, SFLOAT_INVALID);
if (isnan_a)
return (issnan_a & isnan_b) ? b : a;
return b;
}
/*
* Takes an abstract value having sign `sign_z', exponent `exp_z', and significand
* `sig_z' and returns the appropriate value corresponding to the abstract input.
*
* The abstract value is simply rounded and packed into the format. If the abstract
* input cannot be represented exactly an inexact exception is raised. If the
* abstract input is too large, the overflow and inexact exceptions are both raised
* and an infinity or maximal finite value is returned. If the abstract value is
* too small, the value is rounded to a subnormal and the underflow and inexact
* exceptions are only raised if the value cannot be represented exactly with
* a subnormal.
*
* The input significand `sig_z' has it's binary point between bits 30 and 29,
* this is seven bits to the left of its usual location. The shifted significand
* must be normalized or smaller than this. If it's not normalized then the exponent
* `exp_z' must be zero; in that case, the result returned is a subnormal number
* which must not require rounding. In the more usual case where the significand
* is normalized, the exponent must be one less than the *true* exponent.
*
* The handling of underflow and overflow is otherwise in alignment with IEC/IEEE.
*/
static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
sfloat_roundingmode_t mode = state->roundingmode;
bool even = !!(mode == SFLOAT_ROUND_NEAREST_EVEN);
unsigned char increment = 0x40;
unsigned char bits = sig_z & 0x7F;
if (!even) {
if (mode == SFLOAT_ROUND_TO_ZERO)
increment = 0;
else {
increment = 0x7F;
if (sign_z) {
if (mode == SFLOAT_ROUND_UP)
increment = 0;
} else {
if (mode == SFLOAT_ROUND_DOWN)
increment = 0;
}
}
}
if (0xFD <= (uint16_t)exp_z) {
if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) {
SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT);
return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0);
}
if (exp_z < 0) {
/* Check for underflow */
bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000);
SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z);
exp_z = 0;
bits = sig_z & 0x7F;
if (tiny && bits)
SFLOAT_RAISE(state, SFLOAT_UNDERFLOW);
}
}
if (bits)
SFLOAT_RAISE(state, SFLOAT_INEXACT);
sig_z = (sig_z + increment) >> 7;
sig_z &= ~(((bits ^ 0x40) == 0) & even);
if (sig_z == 0)
exp_z = 0;
return SFLOAT_PACK(sign_z, exp_z, sig_z);
}
/*
* Takes an abstract value having sign `sign_z', exponent `exp_z' and significand
* `sig_z' and returns the appropriate value corresponding to the abstract input.
* This function is exactly like `PACK_round' except the significand does not have
* to be normalized.
*
* Bit 31 of the significand must be zero and the exponent must be one less than
* the *true* exponent.
*/
static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
unsigned char c = SFLOAT_CLZ(sig_z, 1);
return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c);
}
/*
* Returns the result of adding the absolute values of `a' and `b'. The sign
* `sign_z' is ignored if the result is a NaN.
*/
static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
int16_t exp_d = exp_a - exp_b;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6;
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6;
uint32_t sig_z = 0;
if (0 < exp_d) {
if (exp_a == 0xFF)
return sig_a ? sfloat_propagate_nan(state, a, b) : a;
if (exp_b == 0)
--exp_d;
else
sig_b |= 0x20000000;
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
exp_z = exp_a;
} else if (exp_d < 0) {
if (exp_b == 0xFF)
return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0);
if (exp_a == 0)
++exp_d;
else
sig_a |= 0x20000000;
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
exp_z = exp_b;
} else {
if (exp_a == 0xFF)
return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a;
if (exp_a == 0)
return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6);
sig_z = 0x40000000 + sig_a + sig_b;
exp_z = exp_a;
goto end;
}
sig_a |= 0x20000000;
sig_z = (sig_a + sig_b) << 1;
--exp_z;
if ((int32_t)sig_z < 0) {
sig_z = sig_a + sig_b;
++exp_z;
}
end:
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
/*
* Returns the result of subtracting the absolute values of `a' and `b'. If the
* sign `sign_z' is one, the difference is negated before being returned. The
* sign is ignored if the result is a NaN.
*/
static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
int16_t exp_d = exp_a - exp_b;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7;
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7;
uint32_t sig_z = 0;
if (0 < exp_d) goto exp_greater_a;
if (exp_d < 0) goto exp_greater_b;
if (exp_a == 0xFF) {
if (sig_a | sig_b)
return sfloat_propagate_nan(state, a, b);
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
if (exp_a == 0)
exp_a = exp_b = 1;
if (sig_b < sig_a) goto greater_a;
if (sig_a < sig_b) goto greater_b;
return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0);
exp_greater_b:
if (exp_b == 0xFF)
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0);
if (exp_a == 0)
++exp_d;
else
sig_a |= 0x40000000;
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
sig_b |= 0x40000000;
greater_b:
sig_z = sig_b - sig_a;
exp_z = exp_b;
sign_z ^= 1;
goto end;
exp_greater_a:
if (exp_a == 0xFF)
return (sig_a) ? sfloat_propagate_nan(state, a, b) : a;
if (exp_b == 0)
--exp_d;
else
sig_b |= 0x40000000;
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
sig_a |= 0x40000000;
greater_a:
sig_z = sig_a - sig_b;
exp_z = exp_a;
end:
--exp_z;
return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z);
}
static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a)
: sfloat_sub_impl(state, a, b, sign_a);
}
static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a)
: sfloat_add_impl(state, a, b, sign_a);
}
static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
uint32_t sig_z = 0;
uint64_t sig_z64 = 0;
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
bool sign_z = sign_a ^ sign_b;
if (exp_a == 0xFF) {
if (sig_a || ((exp_b == 0xFF) && sig_b))
return sfloat_propagate_nan(state, a, b);
if ((exp_b | sig_b) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_b == 0xFF) {
if (sig_b)
return sfloat_propagate_nan(state, a, b);
if ((exp_a | sig_a) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_a == 0) {
if (sig_a == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
}
if (exp_b == 0) {
if (sig_b == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
}
exp_z = exp_a + exp_b - 0x7F;
sig_a = (sig_a | 0x00800000) << 7;
sig_b = (sig_b | 0x00800000) << 8;
SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64);
sig_z = sig_z64;
if (0 <= (int32_t)(sig_z << 1)) {
sig_z <<= 1;
--exp_z;
}
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
int16_t exp_z = 0;
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
uint32_t sig_z = 0;
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
bool sign_z = sign_a ^ sign_b;
if (exp_a == 0xFF) {
if (sig_a)
return sfloat_propagate_nan(state, a, b);
if (exp_b == 0xFF) {
if (sig_b)
return sfloat_propagate_nan(state, a, b);
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
if (exp_b == 0xFF)
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0);
if (exp_b == 0) {
if (sig_b == 0) {
if ((exp_a | sig_a) == 0) {
SFLOAT_RAISE(state, SFLOAT_INVALID);
return SFLOAT_NAN;
}
SFLOAT_RAISE(state, SFLOAT_DIVBYZERO);
return SFLOAT_PACK(sign_z, 0xFF, 0);
}
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
}
if (exp_a == 0) {
if (sig_a == 0)
return SFLOAT_PACK(sign_z, 0, 0);
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
}
exp_z = exp_a - exp_b + 0x7D;
sig_a = (sig_a | 0x00800000) << 7;
sig_b = (sig_b | 0x00800000) << 8;
if (sig_b <= (sig_a + sig_a)) {
sig_a >>= 1;
++exp_z;
}
sig_z = (((uint64_t)sig_a) << 32) / sig_b;
if ((sig_z & 0x3F) == 0)
sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32);
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
}
static sfloat_t sfloat_neg(sfloat_state_t *state, sfloat_t a) {
sfloat_cast_t neg;
neg.f = -1;
return sfloat_mul(state, a, neg.s);
}
static GMQCC_INLINE void sfloat_check(lex_ctx_t ctx, sfloat_state_t *state, const char *vec) {
/* Exception comes from vector component */
if (vec) {
if (state->exceptionflags & SFLOAT_DIVBYZERO)
compile_error(ctx, "division by zero in `%s' component", vec);
if (state->exceptionflags & SFLOAT_INVALID)
compile_error(ctx, "undefined (inf) in `%s' component", vec);
if (state->exceptionflags & SFLOAT_OVERFLOW)
compile_error(ctx, "arithmetic overflow in `%s' component", vec);
if (state->exceptionflags & SFLOAT_UNDERFLOW)
compile_error(ctx, "arithmetic underflow in `%s' component", vec);
return;
}
if (state->exceptionflags & SFLOAT_DIVBYZERO)
compile_error(ctx, "division by zero");
if (state->exceptionflags & SFLOAT_INVALID)
compile_error(ctx, "undefined (inf)");
if (state->exceptionflags & SFLOAT_OVERFLOW)
compile_error(ctx, "arithmetic overflow");
if (state->exceptionflags & SFLOAT_UNDERFLOW)
compile_error(ctx, "arithmetic underflow");
}
static GMQCC_INLINE void sfloat_init(sfloat_state_t *state) {
state->exceptionflags = SFLOAT_NOEXCEPT;
state->roundingmode = FOLD_ROUNDING;
state->tiny = FOLD_TINYNESS;
}
/*
* There is two stages to constant folding in GMQCC: there is the parse
* stage constant folding, where, with the help of the AST, operator
* usages can be constant folded. Then there is the constant folding
* in the IR for things like eliding if statements, can occur.
*
* This file is thus, split into two parts.
*/
#define isfloat(X) (((X))->m_vtype == TYPE_FLOAT)
#define isvector(X) (((X))->m_vtype == TYPE_VECTOR)
#define isstring(X) (((X))->m_vtype == TYPE_STRING)
#define isarray(X) (((X))->m_vtype == TYPE_ARRAY)
#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
/*
* Implementation of basic vector math for vec3_t, for trivial constant
* folding.
*
* TODO: gcc/clang hinting for autovectorization
*/
enum vec3_comp_t {
VEC_COMP_X = 1 << 0,
VEC_COMP_Y = 1 << 1,
VEC_COMP_Z = 1 << 2
};
struct vec3_soft_t {
sfloat_cast_t x;
sfloat_cast_t y;
sfloat_cast_t z;
};
struct vec3_soft_state_t {
vec3_comp_t faults;
sfloat_state_t state[3];
};
static GMQCC_INLINE vec3_soft_t vec3_soft_convert(vec3_t vec) {
vec3_soft_t soft;
soft.x.f = vec.x;
soft.y.f = vec.y;
soft.z.f = vec.z;
return soft;
}
static GMQCC_INLINE bool vec3_soft_exception(vec3_soft_state_t *vstate, size_t index) {
sfloat_exceptionflags_t flags = vstate->state[index].exceptionflags;
if (flags & SFLOAT_DIVBYZERO) return true;
if (flags & SFLOAT_INVALID) return true;
if (flags & SFLOAT_OVERFLOW) return true;
if (flags & SFLOAT_UNDERFLOW) return true;
return false;
}
static GMQCC_INLINE void vec3_soft_eval(vec3_soft_state_t *state,
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t),
vec3_t a,
vec3_t b)
{
vec3_soft_t sa = vec3_soft_convert(a);
vec3_soft_t sb = vec3_soft_convert(b);
callback(&state->state[0], sa.x.s, sb.x.s);
if (vec3_soft_exception(state, 0)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_X);
callback(&state->state[1], sa.y.s, sb.y.s);
if (vec3_soft_exception(state, 1)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Y);
callback(&state->state[2], sa.z.s, sb.z.s);
if (vec3_soft_exception(state, 2)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Z);
}
static GMQCC_INLINE void vec3_check_except(vec3_t a,
vec3_t b,
lex_ctx_t ctx,
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t))
{
vec3_soft_state_t state;
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
return;
sfloat_init(&state.state[0]);
sfloat_init(&state.state[1]);
sfloat_init(&state.state[2]);
vec3_soft_eval(&state, callback, a, b);
if (state.faults & VEC_COMP_X) sfloat_check(ctx, &state.state[0], "x");
if (state.faults & VEC_COMP_Y) sfloat_check(ctx, &state.state[1], "y");
if (state.faults & VEC_COMP_Z) sfloat_check(ctx, &state.state[2], "z");
}
static GMQCC_INLINE vec3_t vec3_add(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_check_except(a, b, ctx, &sfloat_add);
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_sub(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_check_except(a, b, ctx, &sfloat_sub);
out.x = a.x - b.x;
out.y = a.y - b.y;
out.z = a.z - b.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_neg(lex_ctx_t ctx, vec3_t a) {
vec3_t out;
sfloat_cast_t v[3];
sfloat_state_t s[3];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
v[0].f = a.x;
v[1].f = a.y;
v[2].f = a.z;
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_neg(&s[0], v[0].s);
sfloat_neg(&s[1], v[1].s);
sfloat_neg(&s[2], v[2].s);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
end:
out.x = -a.x;
out.y = -a.y;
out.z = -a.z;
return out;
}
static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
return out;
}
static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
vec3_t out;
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
return out;
}
static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
vec3_t out;
out.x = -1-a.x;
out.y = -1-a.y;
out.z = -1-a.z;
return out;
}
static GMQCC_INLINE qcfloat_t vec3_mulvv(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_soft_t sa;
vec3_soft_t sb;
sfloat_state_t s[5];
sfloat_t r[5];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb = vec3_soft_convert(b);
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_init(&s[3]);
sfloat_init(&s[4]);
r[0] = sfloat_mul(&s[0], sa.x.s, sb.x.s);
r[1] = sfloat_mul(&s[1], sa.y.s, sb.y.s);
r[2] = sfloat_mul(&s[2], sa.z.s, sb.z.s);
r[3] = sfloat_add(&s[3], r[0], r[1]);
r[4] = sfloat_add(&s[4], r[3], r[2]);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
sfloat_check(ctx, &s[3], nullptr);
sfloat_check(ctx, &s[4], nullptr);
end:
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
static GMQCC_INLINE vec3_t vec3_mulvf(lex_ctx_t ctx, vec3_t a, qcfloat_t b) {
vec3_t out;
vec3_soft_t sa;
sfloat_cast_t sb;
sfloat_state_t s[3];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb.f = b;
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_mul(&s[0], sa.x.s, sb.s);
sfloat_mul(&s[1], sa.y.s, sb.s);
sfloat_mul(&s[2], sa.z.s, sb.s);
sfloat_check(ctx, &s[0], "x");
sfloat_check(ctx, &s[1], "y");
sfloat_check(ctx, &s[2], "z");
end:
out.x = a.x * b;
out.y = a.y * b;
out.z = a.z * b;
return out;
}
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
return a.x == b.x &&
a.y == b.y &&
a.z == b.z;
}
static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
vec3_t out;
out.x = x;
out.y = y;
out.z = z;
return out;
}
static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
return (!a.x && !a.y && !a.z);
}
static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
return (a.x || a.y || a.z);
}
static GMQCC_INLINE vec3_t vec3_cross(lex_ctx_t ctx, vec3_t a, vec3_t b) {
vec3_t out;
vec3_soft_t sa;
vec3_soft_t sb;
sfloat_t r[9];
sfloat_state_t s[9];
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto end;
sa = vec3_soft_convert(a);
sb = vec3_soft_convert(b);
sfloat_init(&s[0]);
sfloat_init(&s[1]);
sfloat_init(&s[2]);
sfloat_init(&s[3]);
sfloat_init(&s[4]);
sfloat_init(&s[5]);
sfloat_init(&s[6]);
sfloat_init(&s[7]);
sfloat_init(&s[8]);
r[0] = sfloat_mul(&s[0], sa.y.s, sb.z.s);
r[1] = sfloat_mul(&s[1], sa.z.s, sb.y.s);
r[2] = sfloat_mul(&s[2], sa.z.s, sb.x.s);
r[3] = sfloat_mul(&s[3], sa.x.s, sb.z.s);
r[4] = sfloat_mul(&s[4], sa.x.s, sb.y.s);
r[5] = sfloat_mul(&s[5], sa.y.s, sb.x.s);
r[6] = sfloat_sub(&s[6], r[0], r[1]);
r[7] = sfloat_sub(&s[7], r[2], r[3]);
r[8] = sfloat_sub(&s[8], r[4], r[5]);
sfloat_check(ctx, &s[0], nullptr);
sfloat_check(ctx, &s[1], nullptr);
sfloat_check(ctx, &s[2], nullptr);
sfloat_check(ctx, &s[3], nullptr);
sfloat_check(ctx, &s[4], nullptr);
sfloat_check(ctx, &s[5], nullptr);
sfloat_check(ctx, &s[6], "x");
sfloat_check(ctx, &s[7], "y");
sfloat_check(ctx, &s[8], "z");
end:
out.x = a.y * b.z - a.z * b.y;
out.y = a.z * b.x - a.x * b.z;
out.z = a.x * b.y - a.y * b.x;
return out;
}
qcfloat_t fold::immvalue_float(ast_value *value) {
return value->m_constval.vfloat;
}
vec3_t fold::immvalue_vector(ast_value *value) {
return value->m_constval.vvec;
}
const char *fold::immvalue_string(ast_value *value) {
return value->m_constval.vstring;
}
lex_ctx_t fold::ctx() {
lex_ctx_t ctx;
if (m_parser->lex)
return parser_ctx(m_parser);
memset(&ctx, 0, sizeof(ctx));
return ctx;
}
bool fold::immediate_true(ast_value *v) {
switch (v->m_vtype) {
case TYPE_FLOAT:
return !!v->m_constval.vfloat;
case TYPE_INTEGER:
return !!v->m_constval.vint;
case TYPE_VECTOR:
if (OPTS_FLAG(CORRECT_LOGIC))
return vec3_pbool(v->m_constval.vvec);
return !!(v->m_constval.vvec.x);
case TYPE_STRING:
if (!v->m_constval.vstring)
return false;
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return true;
return !!v->m_constval.vstring[0];
default:
compile_error(ctx(), "internal error: fold_immediate_true on invalid type");
break;
}
return !!v->m_constval.vfunc;
}
/* Handy macros to determine if an ast_value can be constant folded. */
#define fold_can_1(X) \
(ast_istype(((X)), ast_value) && (X)->m_hasvalue && ((X)->m_cvq == CV_CONST) && \
((X))->m_vtype != TYPE_FUNCTION)
#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))
fold::fold()
: m_parser(nullptr)
{
}
fold::fold(parser_t *parser)
: m_parser(parser)
{
m_imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
m_imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);
constgen_float(0.0f, false);
constgen_float(1.0f, false);
constgen_float(-1.0f, false);
constgen_float(2.0f, false);
constgen_vector(vec3_create(0.0f, 0.0f, 0.0f));
constgen_vector(vec3_create(-1.0f, -1.0f, -1.0f));
}
bool fold::generate(ir_builder *ir) {
// generate globals for immediate folded values
ast_value *cur;
for (auto &it : m_imm_float)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
for (auto &it : m_imm_vector)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
for (auto &it : m_imm_string)
if (!(cur = it)->generateGlobal(ir, false)) goto err;
return true;
err:
con_out("failed to generate global %s\n", cur->m_name.c_str());
delete ir;
return false;
}
fold::~fold() {
// TODO: parser lifetime so this is called when it should be
#if 0
for (auto &it : m_imm_float) ast_delete(it);
for (auto &it : m_imm_vector) ast_delete(it);
for (auto &it : m_imm_string) ast_delete(it);
util_htdel(m_imm_string_untranslate);
util_htdel(m_imm_string_dotranslate);
#endif
}
ast_expression *fold::constgen_float(qcfloat_t value, bool inexact) {
for (auto &it : m_imm_float)
if (!memcmp(&it->m_constval.vfloat, &value, sizeof(qcfloat_t)))
return it;
ast_value *out = new ast_value(ctx(), "#IMMEDIATE", TYPE_FLOAT);
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_inexact = inexact;
out->m_constval.vfloat = value;
m_imm_float.push_back(out);
return out;
}
ast_expression *fold::constgen_vector(vec3_t value) {
for (auto &it : m_imm_vector)
if (vec3_cmp(it->m_constval.vvec, value))
return it;
ast_value *out = new ast_value(ctx(), "#IMMEDIATE", TYPE_VECTOR);
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_constval.vvec = value;
m_imm_vector.push_back(out);
return out;
}
ast_expression *fold::constgen_string(const char *str, bool translate) {
hash_table_t *table = translate ? m_imm_string_untranslate : m_imm_string_dotranslate;
ast_value *out = nullptr;
size_t hash = util_hthash(table, str);
if ((out = (ast_value*)util_htgeth(table, str, hash)))
return out;
if (translate) {
char name[32];
util_snprintf(name, sizeof(name), "dotranslate_%zu", m_parser->translated++);
out = new ast_value(ctx(), name, TYPE_STRING);
out->m_flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
} else {
out = new ast_value(ctx(), "#IMMEDIATE", TYPE_STRING);
}
out->m_cvq = CV_CONST;
out->m_hasvalue = true;
out->m_isimm = true;
out->m_constval.vstring = parser_strdup(str);
m_imm_string.push_back(out);
util_htseth(table, str, hash, out);
return out;
}
ast_expression *fold::constgen_string(const std::string &str, bool translate) {
return constgen_string(str.c_str(), translate);
}
typedef union {
void (*callback)(void);
sfloat_t (*binary)(sfloat_state_t *, sfloat_t, sfloat_t);
sfloat_t (*unary)(sfloat_state_t *, sfloat_t);
} float_check_callback_t;
bool fold::check_except_float_impl(void (*callback)(void), ast_value *a, ast_value *b) {
float_check_callback_t call;
sfloat_state_t s;
sfloat_cast_t ca;
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES))
return false;
call.callback = callback;
sfloat_init(&s);
ca.f = immvalue_float(a);
if (b) {
sfloat_cast_t cb;
cb.f = immvalue_float(b);
call.binary(&s, ca.s, cb.s);
} else {
call.unary(&s, ca.s);
}
if (s.exceptionflags == 0)
return false;
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
goto inexact_possible;
sfloat_check(ctx(), &s, nullptr);
inexact_possible:
return s.exceptionflags & SFLOAT_INEXACT;
}
#define check_except_float(CALLBACK, A, B) \
check_except_float_impl(((void (*)(void))(CALLBACK)), (A), (B))
bool fold::check_inexact_float(ast_value *a, ast_value *b) {
if (!OPTS_WARN(WARN_INEXACT_COMPARES))
return false;
if (!a->m_inexact && !b->m_inexact)
return false;
return compile_warning(ctx(), WARN_INEXACT_COMPARES, "inexact value in comparison");
}
ast_expression *fold::op_mul_vec(vec3_t vec, ast_value *sel, const char *set) {
qcfloat_t x = (&vec.x)[set[0]-'x'];
qcfloat_t y = (&vec.x)[set[1]-'x'];
qcfloat_t z = (&vec.x)[set[2]-'x'];
if (!y && !z) {
ast_expression *out;
++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
out = ast_member::make(ctx(), sel, set[0]-'x', "");
out->m_keep_node = false;
((ast_member*)out)->m_rvalue = true;
if (x != -1.0f)
return new ast_binary(ctx(), INSTR_MUL_F, constgen_float(x, false), out);
}
return nullptr;
}
ast_expression *fold::op_neg(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a)) {
/* Negation can produce inexact as well */
bool inexact = check_except_float(&sfloat_neg, a, nullptr);
return constgen_float(-immvalue_float(a), inexact);
}
} else if (isvector(a)) {
if (fold_can_1(a))
return constgen_vector(vec3_neg(ctx(), immvalue_vector(a)));
}
return nullptr;
}
ast_expression *fold::op_not(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return constgen_float(!immvalue_float(a), false);
} else if (isvector(a)) {
if (fold_can_1(a))
return constgen_float(vec3_notf(immvalue_vector(a)), false);
} else if (isstring(a)) {
if (fold_can_1(a)) {
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
return constgen_float(!immvalue_string(a), false);
else
return constgen_float(!immvalue_string(a) || !*immvalue_string(a), false);
}
}
return nullptr;
}
ast_expression *fold::op_add(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_add, a, b);
return constgen_float(immvalue_float(a) + immvalue_float(b), inexact);
}
} else if (isvector(a)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_add(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
}
return nullptr;
}
ast_expression *fold::op_sub(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_sub, a, b);
return constgen_float(immvalue_float(a) - immvalue_float(b), inexact);
}
} else if (isvector(a)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_sub(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
}
return nullptr;
}
ast_expression *fold::op_mul(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(b), immvalue_float(a)));
} else {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_mul, a, b);
return constgen_float(immvalue_float(a) * immvalue_float(b), inexact);
}
}
} else if (isvector(a)) {
if (isfloat(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), immvalue_float(b)));
} else {
if (fold_can_2(a, b)) {
return constgen_float(vec3_mulvv(ctx(), immvalue_vector(a), immvalue_vector(b)), false);
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
ast_expression *out;
if ((out = op_mul_vec(immvalue_vector(a), b, "xyz"))) return out;
if ((out = op_mul_vec(immvalue_vector(a), b, "yxz"))) return out;
if ((out = op_mul_vec(immvalue_vector(a), b, "zxy"))) return out;
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
ast_expression *out;
if ((out = op_mul_vec(immvalue_vector(b), a, "xyz"))) return out;
if ((out = op_mul_vec(immvalue_vector(b), a, "yxz"))) return out;
if ((out = op_mul_vec(immvalue_vector(b), a, "zxy"))) return out;
}
}
}
return nullptr;
}
ast_expression *fold::op_div(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b)) {
bool inexact = check_except_float(&sfloat_div, a, b);
return constgen_float(immvalue_float(a) / immvalue_float(b), inexact);
} else if (fold_can_1(b)) {
return new ast_binary(
ctx(),
INSTR_MUL_F,
a,
constgen_float(1.0f / immvalue_float(b), false)
);
}
} else if (isvector(a)) {
if (fold_can_2(a, b)) {
return constgen_vector(vec3_mulvf(ctx(), immvalue_vector(a), 1.0f / immvalue_float(b)));
} else {
return new ast_binary(
ctx(),
INSTR_MUL_VF,
a,
(fold_can_1(b))
? constgen_float(1.0f / immvalue_float(b), false)
: new ast_binary(ctx(),
INSTR_DIV_F,
m_imm_float[1],
b
)
);
}
}
return nullptr;
}
ast_expression *fold::op_mod(ast_value *a, ast_value *b) {
return (fold_can_2(a, b))
? constgen_float(fmod(immvalue_float(a), immvalue_float(b)), false)
: nullptr;
}
ast_expression *fold::op_bor(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) | ((qcint_t)immvalue_float(b))), false);
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_or(immvalue_vector(a), immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return constgen_vector(vec3_orvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_band(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) & ((qcint_t)immvalue_float(b))), false);
} else {
if (isvector(b)) {
if (fold_can_2(a, b))
return constgen_vector(vec3_and(immvalue_vector(a), immvalue_vector(b)));
} else {
if (fold_can_2(a, b))
return constgen_vector(vec3_andvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_xor(ast_value *a, ast_value *b) {
if (isfloat(a)) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)(((qcint_t)immvalue_float(a)) ^ ((qcint_t)immvalue_float(b))), false);
} else {
if (fold_can_2(a, b)) {
if (isvector(b))
return constgen_vector(vec3_xor(immvalue_vector(a), immvalue_vector(b)));
else
return constgen_vector(vec3_xorvf(immvalue_vector(a), immvalue_float(b)));
}
}
return nullptr;
}
ast_expression *fold::op_lshift(ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return constgen_float((qcfloat_t)floorf(immvalue_float(a) * powf(2.0f, immvalue_float(b))), false);
return nullptr;
}
ast_expression *fold::op_rshift(ast_value *a, ast_value *b) {
if (fold_can_2(a, b) && isfloats(a, b))
return constgen_float((qcfloat_t)floorf(immvalue_float(a) / powf(2.0f, immvalue_float(b))), false);
return nullptr;
}
ast_expression *fold::op_andor(ast_value *a, ast_value *b, float expr) {
if (fold_can_2(a, b)) {
if (OPTS_FLAG(PERL_LOGIC)) {
if (expr)
return immediate_true(a) ? a : b;
else
return immediate_true(a) ? b : a;
} else {
return constgen_float(
((expr) ? (immediate_true(a) || immediate_true(b))
: (immediate_true(a) && immediate_true(b)))
? 1
: 0,
false
);
}
}
return nullptr;
}
ast_expression *fold::op_tern(ast_value *a, ast_value *b, ast_value *c) {
if (fold_can_1(a)) {
return immediate_true(a)
? b
: c;
}
return nullptr;
}
ast_expression *fold::op_exp(ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return constgen_float((qcfloat_t)powf(immvalue_float(a), immvalue_float(b)), false);
return nullptr;
}
ast_expression *fold::op_lteqgt(ast_value *a, ast_value *b) {
if (fold_can_2(a,b)) {
check_inexact_float(a, b);
if (immvalue_float(a) < immvalue_float(b)) return m_imm_float[2];
if (immvalue_float(a) == immvalue_float(b)) return m_imm_float[0];
if (immvalue_float(a) > immvalue_float(b)) return m_imm_float[1];
}
return nullptr;
}
ast_expression *fold::op_ltgt(ast_value *a, ast_value *b, bool lt) {
if (fold_can_2(a, b)) {
check_inexact_float(a, b);
return (lt) ? m_imm_float[!!(immvalue_float(a) < immvalue_float(b))]
: m_imm_float[!!(immvalue_float(a) > immvalue_float(b))];
}
return nullptr;
}
ast_expression *fold::op_cmp(ast_value *a, ast_value *b, bool ne) {
if (fold_can_2(a, b)) {
if (isfloat(a) && isfloat(b)) {
float la = immvalue_float(a);
float lb = immvalue_float(b);
check_inexact_float(a, b);
return m_imm_float[ne ? la != lb : la == lb];
} else if (isvector(a) && isvector(b)) {
vec3_t la = immvalue_vector(a);
vec3_t lb = immvalue_vector(b);
bool compare = vec3_cmp(la, lb);
return m_imm_float[ne ? !compare : compare];
} else if (isstring(a) && isstring(b)) {
bool compare = !strcmp(immvalue_string(a), immvalue_string(b));
return m_imm_float[ne ? !compare : compare];
}
}
return nullptr;
}
ast_expression *fold::op_bnot(ast_value *a) {
if (isfloat(a)) {
if (fold_can_1(a))
return constgen_float(-1-immvalue_float(a), false);
} else {
if (isvector(a)) {
if (fold_can_1(a))
return constgen_vector(vec3_not(immvalue_vector(a)));
}
}
return nullptr;
}
ast_expression *fold::op_cross(ast_value *a, ast_value *b) {
if (fold_can_2(a, b))
return constgen_vector(vec3_cross(ctx(),
immvalue_vector(a),
immvalue_vector(b)));
return nullptr;
}
ast_expression *fold::op_length(ast_value *a) {
if (fold_can_1(a) && isstring(a))
return constgen_float(strlen(immvalue_string(a)), false);
if (isarray(a))
return constgen_float(a->m_initlist.size(), false);
return nullptr;
}
ast_expression *fold::op(const oper_info *info, ast_expression **opexprs) {
ast_value *a = (ast_value*)opexprs[0];
ast_value *b = (ast_value*)opexprs[1];
ast_value *c = (ast_value*)opexprs[2];
ast_expression *e = nullptr;
/* can a fold operation be applied to this operator usage? */
if (!info->folds)
return nullptr;
switch(info->operands) {
case 3: if(!c) return nullptr; [[fallthrough]];
case 2: if(!b) return nullptr; [[fallthrough]];
case 1:
if(!a) {
compile_error(ctx(), "internal error: fold_op no operands to fold\n");
return nullptr;
}
}
#define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \
case opid##ARGS ARGS_OPID: \
if ((e = op_##OP ARGS_FOLD)) { \
++opts_optimizationcount[OPTIM_CONST_FOLD]; \
} \
return e
switch(info->id) {
fold_op_case(2, ('-', 'P'), neg, (a));
fold_op_case(2, ('!', 'P'), not, (a));
fold_op_case(1, ('+'), add, (a, b));
fold_op_case(1, ('-'), sub, (a, b));
fold_op_case(1, ('*'), mul, (a, b));
fold_op_case(1, ('/'), div, (a, b));
fold_op_case(1, ('%'), mod, (a, b));
fold_op_case(1, ('|'), bor, (a, b));
fold_op_case(1, ('&'), band, (a, b));
fold_op_case(1, ('^'), xor, (a, b));
fold_op_case(1, ('<'), ltgt, (a, b, true));
fold_op_case(1, ('>'), ltgt, (a, b, false));
fold_op_case(2, ('<', '<'), lshift, (a, b));
fold_op_case(2, ('>', '>'), rshift, (a, b));
fold_op_case(2, ('|', '|'), andor, (a, b, true));
fold_op_case(2, ('&', '&'), andor, (a, b, false));
fold_op_case(2, ('?', ':'), tern, (a, b, c));
fold_op_case(2, ('*', '*'), exp, (a, b));
fold_op_case(3, ('<','=','>'), lteqgt, (a, b));
fold_op_case(2, ('!', '='), cmp, (a, b, true));
fold_op_case(2, ('=', '='), cmp, (a, b, false));
fold_op_case(2, ('~', 'P'), bnot, (a));
fold_op_case(2, ('>', '<'), cross, (a, b));
fold_op_case(3, ('l', 'e', 'n'), length, (a));
}
#undef fold_op_case
compile_error(ctx(), "internal error: attempted to constant-fold for unsupported operator");
return nullptr;
}
/*
* Constant folding for compiler intrinsics, similar approach to operator
* folding, primarily: individual functions for each intrinsics to fold,
* and a generic selection function.
*/
ast_expression *fold::intrinsic_isfinite(ast_value *a) {
return constgen_float(isfinite(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isinf(ast_value *a) {
return constgen_float(isinf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnan(ast_value *a) {
return constgen_float(isnan(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_isnormal(ast_value *a) {
return constgen_float(isnormal(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_signbit(ast_value *a) {
return constgen_float(signbit(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_acosh(ast_value *a) {
return constgen_float(acoshf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_asinh(ast_value *a) {
return constgen_float(asinhf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_atanh(ast_value *a) {
return constgen_float((float)atanh(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp(ast_value *a) {
return constgen_float(expf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_exp2(ast_value *a) {
return constgen_float(exp2f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_expm1(ast_value *a) {
return constgen_float(expm1f(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic_mod(ast_value *lhs, ast_value *rhs) {
return constgen_float(fmodf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_pow(ast_value *lhs, ast_value *rhs) {
return constgen_float(powf(immvalue_float(lhs), immvalue_float(rhs)), false);
}
ast_expression *fold::intrinsic_fabs(ast_value *a) {
return constgen_float(fabsf(immvalue_float(a)), false);
}
ast_expression *fold::intrinsic(const char *intrinsic, ast_expression **arg) {
ast_expression *ret = nullptr;
ast_value *a = (ast_value*)arg[0];
ast_value *b = (ast_value*)arg[1];
if (!strcmp(intrinsic, "isfinite")) ret = intrinsic_isfinite(a);
if (!strcmp(intrinsic, "isinf")) ret = intrinsic_isinf(a);
if (!strcmp(intrinsic, "isnan")) ret = intrinsic_isnan(a);
if (!strcmp(intrinsic, "isnormal")) ret = intrinsic_isnormal(a);
if (!strcmp(intrinsic, "signbit")) ret = intrinsic_signbit(a);
if (!strcmp(intrinsic, "acosh")) ret = intrinsic_acosh(a);
if (!strcmp(intrinsic, "asinh")) ret = intrinsic_asinh(a);
if (!strcmp(intrinsic, "atanh")) ret = intrinsic_atanh(a);
if (!strcmp(intrinsic, "exp")) ret = intrinsic_exp(a);
if (!strcmp(intrinsic, "exp2")) ret = intrinsic_exp2(a);
if (!strcmp(intrinsic, "expm1")) ret = intrinsic_expm1(a);
if (!strcmp(intrinsic, "mod")) ret = intrinsic_mod(a, b);
if (!strcmp(intrinsic, "pow")) ret = intrinsic_pow(a, b);
if (!strcmp(intrinsic, "fabs")) ret = intrinsic_fabs(a);
if (ret)
++opts_optimizationcount[OPTIM_CONST_FOLD];
return ret;
}
/*
* These are all the actual constant folding methods that happen in between
* the AST/IR stage of the compiler , i.e eliminating branches for const
* expressions, which is the only supported thing so far. We undefine the
* testing macros here because an ir_value is differant than an ast_value.
*/
#undef expect
#undef isfloat
#undef isstring
#undef isvector
#undef fold__immvalue_float
#undef fold__immvalue_string
#undef fold__immvalue_vector
#undef fold_can_1
#undef fold_can_2
#define isfloat(X) ((X)->m_vtype == TYPE_FLOAT)
/*#define isstring(X) ((X)->m_vtype == TYPE_STRING)*/
/*#define isvector(X) ((X)->m_vtype == TYPE_VECTOR)*/
#define fold_can_1(X) ((X)->m_hasvalue && (X)->m_cvq == CV_CONST)
/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/
qcfloat_t fold::immvalue_float(ir_value *value) {
return value->m_constval.vfloat;
}
vec3_t fold::immvalue_vector(ir_value *value) {
return value->m_constval.vvec;
}
ast_expression *fold::superfluous(ast_expression *left, ast_expression *right, int op) {
ast_expression *swapped = nullptr; /* using this as bool */
ast_value *load;
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) {
swapped = left;
left = right;
right = swapped;
}
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right)))
return nullptr;
switch (op) {
case INSTR_DIV_F:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_MUL_F:
if (immvalue_float(load) == 1.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_F:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_ADD_F:
if (immvalue_float(load) == 0.0f) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_MUL_V:
if (vec3_cmp(immvalue_vector(load), vec3_create(1, 1, 1))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
case INSTR_SUB_V:
if (swapped)
return nullptr;
[[fallthrough]];
case INSTR_ADD_V:
if (vec3_cmp(immvalue_vector(load), vec3_create(0, 0, 0))) {
++opts_optimizationcount[OPTIM_PEEPHOLE];
ast_unref(right);
return left;
}
break;
}
return nullptr;
}
ast_expression *fold::binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) {
ast_expression *ret = superfluous(left, right, op);
if (ret)
return ret;
return new ast_binary(ctx, op, left, right);
}
int fold::cond(ir_value *condval, ast_function *func, ast_ifthen *branch) {
if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
ir_block *elide;
ir_value *dummy;
bool istrue = (immvalue_float(condval) != 0.0f && branch->m_on_true);
bool isfalse = (immvalue_float(condval) == 0.0f && branch->m_on_false);
ast_expression *path = (istrue) ? branch->m_on_true :
(isfalse) ? branch->m_on_false : nullptr;
if (!path) {
/*
* no path to take implies that the evaluation is if(0) and there
* is no else block. so eliminate all the code.
*/
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
return true;
}
if (!(elide = ir_function_create_block(branch->m_context, func->m_ir_func, func->makeLabel((istrue) ? "ontrue" : "onfalse"))))
return false;
if (!path->codegen(func, false, &dummy))
return false;
if (!ir_block_create_jump(func->m_curblock, branch->m_context, elide))
return false;
/*
* now the branch has been eliminated and the correct block for the constant evaluation
* is expanded into the current block for the function.
*/
func->m_curblock = elide;
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
return true;
}
return -1; /* nothing done */
}
int fold::cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) {
return cond(condval, func, (ast_ifthen*)branch);
}
int fold::cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) {
return cond(condval, func, branch);
}