/* * Copyright (C) 2012 * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "gmqcc.h" #include "ast.h" #define ast_instantiate(T, ctx, destroyfn) \ T* self = (T*)mem_a(sizeof(T)); \ if (!self) { \ return NULL; \ } \ ast_node_init((ast_node*)self, ctx, TYPE_##T); \ ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn /* error handling */ static void asterror(lex_ctx ctx, const char *msg, ...) { va_list ap; va_start(ap, msg); cvprintmsg(ctx, LVL_ERROR, "error", msg, ap); va_end(ap); } /* It must not be possible to get here. */ static GMQCC_NORETURN void _ast_node_destroy(ast_node *self) { fprintf(stderr, "ast node missing destroy()\n"); abort(); } /* Initialize main ast node aprts */ static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype) { self->node.context = ctx; self->node.destroy = &_ast_node_destroy; self->node.keep = false; self->node.nodetype = nodetype; } /* General expression initialization */ static void ast_expression_init(ast_expression *self, ast_expression_codegen *codegen) { self->expression.codegen = codegen; self->expression.vtype = TYPE_VOID; self->expression.next = NULL; self->expression.outl = NULL; self->expression.outr = NULL; MEM_VECTOR_INIT(&self->expression, params); } static void ast_expression_delete(ast_expression *self) { size_t i; if (self->expression.next) ast_delete(self->expression.next); for (i = 0; i < self->expression.params_count; ++i) { ast_delete(self->expression.params[i]); } MEM_VECTOR_CLEAR(&self->expression, params); } static void ast_expression_delete_full(ast_expression *self) { ast_expression_delete(self); mem_d(self); } MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params) ast_value* ast_value_copy(const ast_value *self) { size_t i; const ast_expression_common *fromex; ast_expression_common *selfex; ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype); if (self->expression.next) { cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next); if (!cp->expression.next) { ast_value_delete(cp); return NULL; } } fromex = &self->expression; selfex = &cp->expression; for (i = 0; i < fromex->params_count; ++i) { ast_value *v = ast_value_copy(fromex->params[i]); if (!v || !ast_expression_common_params_add(selfex, v)) { ast_value_delete(cp); return NULL; } } return cp; } bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other) { size_t i; const ast_expression_common *fromex; ast_expression_common *selfex; self->expression.vtype = other->expression.vtype; if (other->expression.next) { self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next); if (!self->expression.next) return false; } fromex = &other->expression; selfex = &self->expression; for (i = 0; i < fromex->params_count; ++i) { ast_value *v = ast_value_copy(fromex->params[i]); if (!v || !ast_expression_common_params_add(selfex, v)) return false; } return true; } static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype) { ast_instantiate(ast_expression, ctx, ast_expression_delete_full); ast_expression_init(self, NULL); self->expression.codegen = NULL; self->expression.next = NULL; self->expression.vtype = vtype; return self; } ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex) { size_t i; const ast_expression_common *fromex; ast_expression_common *selfex; if (!ex) return NULL; else { ast_instantiate(ast_expression, ctx, ast_expression_delete_full); ast_expression_init(self, NULL); fromex = &ex->expression; selfex = &self->expression; /* This may never be codegen()d */ selfex->codegen = NULL; selfex->vtype = fromex->vtype; if (fromex->next) { selfex->next = ast_type_copy(ctx, fromex->next); if (!selfex->next) { ast_expression_delete_full(self); return NULL; } } else selfex->next = NULL; for (i = 0; i < fromex->params_count; ++i) { ast_value *v = ast_value_copy(fromex->params[i]); if (!v || !ast_expression_common_params_add(selfex, v)) { ast_expression_delete_full(self); return NULL; } } return self; } } bool ast_compare_type(ast_expression *a, ast_expression *b) { if (a->expression.vtype != b->expression.vtype) return false; if (!a->expression.next != !b->expression.next) return false; if (a->expression.params_count != b->expression.params_count) return false; if (a->expression.params_count) { size_t i; for (i = 0; i < a->expression.params_count; ++i) { if (!ast_compare_type((ast_expression*)a->expression.params[i], (ast_expression*)b->expression.params[i])) return false; } } if (a->expression.next) return ast_compare_type(a->expression.next, b->expression.next); return true; } ast_value* ast_value_new(lex_ctx ctx, const char *name, int t) { ast_instantiate(ast_value, ctx, ast_value_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_value_codegen); self->expression.node.keep = true; /* keep */ self->name = name ? util_strdup(name) : NULL; self->expression.vtype = t; self->expression.next = NULL; self->isconst = false; memset(&self->constval, 0, sizeof(self->constval)); self->ir_v = NULL; return self; } void ast_value_delete(ast_value* self) { if (self->name) mem_d((void*)self->name); if (self->isconst) { switch (self->expression.vtype) { case TYPE_STRING: mem_d((void*)self->constval.vstring); break; case TYPE_FUNCTION: /* unlink us from the function node */ self->constval.vfunc->vtype = NULL; break; /* NOTE: delete function? currently collected in * the parser structure */ default: break; } } ast_expression_delete((ast_expression*)self); mem_d(self); } bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p) { return ast_expression_common_params_add(&self->expression, p); } bool ast_value_set_name(ast_value *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } ast_binary* ast_binary_new(lex_ctx ctx, int op, ast_expression* left, ast_expression* right) { ast_instantiate(ast_binary, ctx, ast_binary_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen); self->op = op; self->left = left; self->right = right; if (op >= INSTR_EQ_F && op <= INSTR_GT) self->expression.vtype = TYPE_FLOAT; else if (op == INSTR_AND || op == INSTR_OR || op == INSTR_BITAND || op == INSTR_BITOR) self->expression.vtype = TYPE_FLOAT; else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV) self->expression.vtype = TYPE_VECTOR; else if (op == INSTR_MUL_V) self->expression.vtype = TYPE_FLOAT; else self->expression.vtype = left->expression.vtype; return self; } void ast_binary_delete(ast_binary *self) { ast_unref(self->left); ast_unref(self->right); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op, ast_expression* left, ast_expression* right) { ast_instantiate(ast_binstore, ctx, ast_binstore_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen); self->opstore = storop; self->opbin = op; self->dest = left; self->source = right; self->expression.vtype = left->expression.vtype; if (left->expression.next) { self->expression.next = ast_type_copy(ctx, left); if (!self->expression.next) { ast_delete(self); return NULL; } } else self->expression.next = NULL; return self; } void ast_binstore_delete(ast_binstore *self) { ast_unref(self->dest); ast_unref(self->source); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_unary* ast_unary_new(lex_ctx ctx, int op, ast_expression *expr) { ast_instantiate(ast_unary, ctx, ast_unary_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen); self->op = op; self->operand = expr; if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) { self->expression.vtype = TYPE_FLOAT; } else asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m); return self; } void ast_unary_delete(ast_unary *self) { ast_unref(self->operand); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr) { ast_instantiate(ast_return, ctx, ast_return_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen); self->operand = expr; return self; } void ast_return_delete(ast_return *self) { if (self->operand) ast_unref(self->operand); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field) { const ast_expression *outtype; ast_instantiate(ast_entfield, ctx, ast_entfield_delete); if (field->expression.vtype != TYPE_FIELD) { mem_d(self); return NULL; } outtype = field->expression.next; if (!outtype) { mem_d(self); /* Error: field has no type... */ return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen); self->entity = entity; self->field = field; if (!ast_type_adopt(self, outtype)) { ast_entfield_delete(self); return NULL; } return self; } void ast_entfield_delete(ast_entfield *self) { ast_unref(self->entity); ast_unref(self->field); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field) { ast_instantiate(ast_member, ctx, ast_member_delete); if (field >= 3) { mem_d(self); return NULL; } if (owner->expression.vtype != TYPE_VECTOR && owner->expression.vtype != TYPE_FIELD) { asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]); mem_d(self); return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen); self->expression.node.keep = true; /* keep */ if (owner->expression.vtype == TYPE_VECTOR) { self->expression.vtype = TYPE_FLOAT; self->expression.next = NULL; } else { self->expression.vtype = TYPE_FIELD; self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT); } self->owner = owner; self->field = field; return self; } void ast_member_delete(ast_member *self) { /* The owner is always an ast_value, which has .keep=true, * also: ast_members are usually deleted after the owner, thus * this will cause invalid access ast_unref(self->owner); * once we allow (expression).x to access a vector-member, we need * to change this: preferably by creating an alternate ast node for this * purpose that is not garbage-collected. */ ast_expression_delete((ast_expression*)self); mem_d(self); } ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse) { ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete); if (!ontrue && !onfalse) { /* because it is invalid */ mem_d(self); return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen); self->cond = cond; self->on_true = ontrue; self->on_false = onfalse; return self; } void ast_ifthen_delete(ast_ifthen *self) { ast_unref(self->cond); if (self->on_true) ast_unref(self->on_true); if (self->on_false) ast_unref(self->on_false); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse) { ast_instantiate(ast_ternary, ctx, ast_ternary_delete); /* This time NEITHER must be NULL */ if (!ontrue || !onfalse) { mem_d(self); return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen); self->cond = cond; self->on_true = ontrue; self->on_false = onfalse; self->phi_out = NULL; return self; } void ast_ternary_delete(ast_ternary *self) { ast_unref(self->cond); ast_unref(self->on_true); ast_unref(self->on_false); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_loop* ast_loop_new(lex_ctx ctx, ast_expression *initexpr, ast_expression *precond, ast_expression *postcond, ast_expression *increment, ast_expression *body) { ast_instantiate(ast_loop, ctx, ast_loop_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen); self->initexpr = initexpr; self->precond = precond; self->postcond = postcond; self->increment = increment; self->body = body; return self; } void ast_loop_delete(ast_loop *self) { if (self->initexpr) ast_unref(self->initexpr); if (self->precond) ast_unref(self->precond); if (self->postcond) ast_unref(self->postcond); if (self->increment) ast_unref(self->increment); if (self->body) ast_unref(self->body); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_call* ast_call_new(lex_ctx ctx, ast_expression *funcexpr) { ast_instantiate(ast_call, ctx, ast_call_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen); MEM_VECTOR_INIT(self, params); self->func = funcexpr; self->expression.vtype = funcexpr->expression.next->expression.vtype; if (funcexpr->expression.next->expression.next) self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next); return self; } MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params) void ast_call_delete(ast_call *self) { size_t i; for (i = 0; i < self->params_count; ++i) ast_unref(self->params[i]); MEM_VECTOR_CLEAR(self, params); if (self->func) ast_unref(self->func); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_store* ast_store_new(lex_ctx ctx, int op, ast_expression *dest, ast_expression *source) { ast_instantiate(ast_store, ctx, ast_store_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen); self->op = op; self->dest = dest; self->source = source; return self; } void ast_store_delete(ast_store *self) { ast_unref(self->dest); ast_unref(self->source); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_block* ast_block_new(lex_ctx ctx) { ast_instantiate(ast_block, ctx, ast_block_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_block_codegen); MEM_VECTOR_INIT(self, locals); MEM_VECTOR_INIT(self, exprs); MEM_VECTOR_INIT(self, collect); return self; } MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals) MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs) MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect) bool ast_block_collect(ast_block *self, ast_expression *expr) { if (!ast_block_collect_add(self, expr)) return false; expr->expression.node.keep = true; return true; } void ast_block_delete(ast_block *self) { size_t i; for (i = 0; i < self->exprs_count; ++i) ast_unref(self->exprs[i]); MEM_VECTOR_CLEAR(self, exprs); for (i = 0; i < self->locals_count; ++i) ast_delete(self->locals[i]); MEM_VECTOR_CLEAR(self, locals); for (i = 0; i < self->collect_count; ++i) ast_delete(self->collect[i]); MEM_VECTOR_CLEAR(self, collect); ast_expression_delete((ast_expression*)self); mem_d(self); } bool ast_block_set_type(ast_block *self, ast_expression *from) { if (self->expression.next) ast_delete(self->expression.next); self->expression.vtype = from->expression.vtype; if (from->expression.next) { self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next); if (!self->expression.next) return false; } else self->expression.next = NULL; return true; } ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype) { ast_instantiate(ast_function, ctx, ast_function_delete); if (!vtype || vtype->isconst || vtype->expression.vtype != TYPE_FUNCTION) { mem_d(self); return NULL; } self->vtype = vtype; self->name = name ? util_strdup(name) : NULL; MEM_VECTOR_INIT(self, blocks); self->labelcount = 0; self->builtin = 0; self->ir_func = NULL; self->curblock = NULL; self->breakblock = NULL; self->continueblock = NULL; vtype->isconst = true; vtype->constval.vfunc = self; return self; } MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks) void ast_function_delete(ast_function *self) { size_t i; if (self->name) mem_d((void*)self->name); if (self->vtype) { /* ast_value_delete(self->vtype); */ self->vtype->isconst = false; self->vtype->constval.vfunc = NULL; /* We use unref - if it was stored in a global table it is supposed * to be deleted from *there* */ ast_unref(self->vtype); } for (i = 0; i < self->blocks_count; ++i) ast_delete(self->blocks[i]); MEM_VECTOR_CLEAR(self, blocks); mem_d(self); } static void ast_util_hexitoa(char *buf, size_t size, unsigned int num) { unsigned int base = 10; #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0) #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0) if (size < 1) return; checknul(); if (!num) addch('0'); else { while (num) { int digit = num % base; num /= base; addch('0' + digit); } } *buf = 0; #undef addch #undef checknul } const char* ast_function_label(ast_function *self, const char *prefix) { size_t id = (self->labelcount++); size_t len = strlen(prefix); strncpy(self->labelbuf, prefix, sizeof(self->labelbuf)); ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id); return self->labelbuf; } /*********************************************************************/ /* AST codegen part * by convention you must never pass NULL to the 'ir_value **out' * parameter. If you really don't care about the output, pass a dummy. * But I can't imagine a pituation where the output is truly unnecessary. */ bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out) { /* NOTE: This is the codegen for a variable used in an expression. * It is not the codegen to generate the value. For this purpose, * ast_local_codegen and ast_global_codegen are to be used before this * is executed. ast_function_codegen should take care of its locals, * and the ast-user should take care of ast_global_codegen to be used * on all the globals. */ if (!self->ir_v) { asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name); return false; } *out = self->ir_v; return true; } bool ast_global_codegen(ast_value *self, ir_builder *ir) { ir_value *v = NULL; if (self->isconst && self->expression.vtype == TYPE_FUNCTION) { ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype); if (!func) return false; func->context = ast_ctx(self); self->constval.vfunc->ir_func = func; self->ir_v = func->value; /* The function is filled later on ast_function_codegen... */ return true; } if (self->expression.vtype == TYPE_FIELD) { v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype); if (!v) return false; if (self->isconst) { asterror(ast_ctx(self), "TODO: constant field pointers with value\n"); goto error; } self->ir_v = v; return true; } v = ir_builder_create_global(ir, self->name, self->expression.vtype); if (!v) { asterror(ast_ctx(self), "ir_builder_create_global failed\n"); return false; } if (self->isconst) { switch (self->expression.vtype) { case TYPE_FLOAT: if (!ir_value_set_float(v, self->constval.vfloat)) goto error; break; case TYPE_VECTOR: if (!ir_value_set_vector(v, self->constval.vvec)) goto error; break; case TYPE_STRING: if (!ir_value_set_string(v, self->constval.vstring)) goto error; break; case TYPE_FUNCTION: asterror(ast_ctx(self), "global of type function not properly generated\n"); goto error; /* Cannot generate an IR value for a function, * need a pointer pointing to a function rather. */ default: asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype); break; } } /* link us to the ir_value */ self->ir_v = v; return true; error: /* clean up */ ir_value_delete(v); return false; } bool ast_local_codegen(ast_value *self, ir_function *func, bool param) { ir_value *v = NULL; if (self->isconst && self->expression.vtype == TYPE_FUNCTION) { /* Do we allow local functions? I think not... * this is NOT a function pointer atm. */ return false; } v = ir_function_create_local(func, self->name, self->expression.vtype, param); if (!v) return false; /* A constant local... hmmm... * I suppose the IR will have to deal with this */ if (self->isconst) { switch (self->expression.vtype) { case TYPE_FLOAT: if (!ir_value_set_float(v, self->constval.vfloat)) goto error; break; case TYPE_VECTOR: if (!ir_value_set_vector(v, self->constval.vvec)) goto error; break; case TYPE_STRING: if (!ir_value_set_string(v, self->constval.vstring)) goto error; break; default: asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype); break; } } /* link us to the ir_value */ self->ir_v = v; return true; error: /* clean up */ ir_value_delete(v); return false; } bool ast_function_codegen(ast_function *self, ir_builder *ir) { ir_function *irf; ir_value *dummy; ast_expression_common *ec; size_t i; irf = self->ir_func; if (!irf) { asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n"); return false; } /* fill the parameter list */ ec = &self->vtype->expression; for (i = 0; i < ec->params_count; ++i) { if (!ir_function_params_add(irf, ec->params[i]->expression.vtype)) return false; if (!self->builtin) { if (!ast_local_codegen(ec->params[i], self->ir_func, true)) return false; } } if (self->builtin) { irf->builtin = self->builtin; return true; } if (!self->blocks_count) { asterror(ast_ctx(self), "function `%s` has no body", self->name); return false; } self->curblock = ir_function_create_block(irf, "entry"); if (!self->curblock) return false; for (i = 0; i < self->blocks_count; ++i) { ast_expression_codegen *gen = self->blocks[i]->expression.codegen; if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy)) return false; } /* TODO: check return types */ if (!self->curblock->is_return) { return ir_block_create_return(self->curblock, NULL); /* From now on the parser has to handle this situation */ #if 0 if (!self->vtype->expression.next || self->vtype->expression.next->expression.vtype == TYPE_VOID) { return ir_block_create_return(self->curblock, NULL); } else { /* error("missing return"); */ asterror(ast_ctx(self), "function `%s` missing return value", self->name); return false; } #endif } return true; } /* Note, you will not see ast_block_codegen generate ir_blocks. * To the AST and the IR, blocks are 2 different things. * In the AST it represents a block of code, usually enclosed in * curly braces {...}. * While in the IR it represents a block in terms of control-flow. */ bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out) { size_t i; /* We don't use this * Note: an ast-representation using the comma-operator * of the form: (a, b, c) = x should not assign to c... */ (void)lvalue; if (self->expression.outr) { *out = self->expression.outr; return true; } /* output is NULL at first, we'll have each expression * assign to out output, thus, a comma-operator represention * using an ast_block will return the last generated value, * so: (b, c) + a executed both b and c, and returns c, * which is then added to a. */ *out = NULL; /* generate locals */ for (i = 0; i < self->locals_count; ++i) { if (!ast_local_codegen(self->locals[i], func->ir_func, false)) return false; } for (i = 0; i < self->exprs_count; ++i) { ast_expression_codegen *gen = self->exprs[i]->expression.codegen; if (!(*gen)(self->exprs[i], func, false, out)) return false; } self->expression.outr = *out; return true; } bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *left, *right; if (lvalue && self->expression.outl) { *out = self->expression.outl; return true; } if (!lvalue && self->expression.outr) { *out = self->expression.outr; return true; } cgen = self->dest->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->dest), func, true, &left)) return false; self->expression.outl = left; cgen = self->source->expression.codegen; /* rvalue! */ if (!(*cgen)((ast_expression*)(self->source), func, false, &right)) return false; if (!ir_block_create_store_op(func->curblock, self->op, left, right)) return false; self->expression.outr = right; /* Theoretically, an assinment returns its left side as an * lvalue, if we don't need an lvalue though, we return * the right side as an rvalue, otherwise we have to * somehow know whether or not we need to dereference the pointer * on the left side - that is: OP_LOAD if it was an address. * Also: in original QC we cannot OP_LOADP *anyway*. */ *out = (lvalue ? left : right); return true; } bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *left, *right; /* In the context of a binary operation, we can disregard * the lvalue flag. */ (void)lvalue; if (self->expression.outr) { *out = self->expression.outr; return true; } cgen = self->left->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->left), func, false, &left)) return false; cgen = self->right->expression.codegen; /* rvalue! */ if (!(*cgen)((ast_expression*)(self->right), func, false, &right)) return false; *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"), self->op, left, right); if (!*out) return false; self->expression.outr = *out; return true; } bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *leftl, *leftr, *right, *bin; if (lvalue && self->expression.outl) { *out = self->expression.outl; return true; } if (!lvalue && self->expression.outr) { *out = self->expression.outr; return true; } /* for a binstore we need both an lvalue and an rvalue for the left side */ /* rvalue of destination! */ cgen = self->dest->expression.codegen; if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr)) return false; /* source as rvalue only */ cgen = self->source->expression.codegen; if (!(*cgen)((ast_expression*)(self->source), func, false, &right)) return false; /* now the binary */ bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"), self->opbin, leftr, right); self->expression.outr = bin; /* now store them */ cgen = self->dest->expression.codegen; /* lvalue of destination */ if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl)) return false; self->expression.outl = leftl; if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin)) return false; self->expression.outr = bin; /* Theoretically, an assinment returns its left side as an * lvalue, if we don't need an lvalue though, we return * the right side as an rvalue, otherwise we have to * somehow know whether or not we need to dereference the pointer * on the left side - that is: OP_LOAD if it was an address. * Also: in original QC we cannot OP_LOADP *anyway*. */ *out = (lvalue ? leftl : bin); return true; } bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *operand; /* In the context of a unary operation, we can disregard * the lvalue flag. */ (void)lvalue; if (self->expression.outr) { *out = self->expression.outr; return true; } cgen = self->operand->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand)) return false; *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"), self->op, operand); if (!*out) return false; self->expression.outr = *out; return true; } bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *operand; /* In the context of a return operation, we can disregard * the lvalue flag. */ (void)lvalue; if (self->expression.outr) { asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n"); return false; } self->expression.outr = (ir_value*)1; if (self->operand) { cgen = self->operand->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand)) return false; if (!ir_block_create_return(func->curblock, operand)) return false; } else { if (!ir_block_create_return(func->curblock, NULL)) return false; } return true; } bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *ent, *field; /* This function needs to take the 'lvalue' flag into account! * As lvalue we provide a field-pointer, as rvalue we provide the * value in a temp. */ if (lvalue && self->expression.outl) { *out = self->expression.outl; return true; } if (!lvalue && self->expression.outr) { *out = self->expression.outr; return true; } cgen = self->entity->expression.codegen; if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent)) return false; cgen = self->field->expression.codegen; if (!(*cgen)((ast_expression*)(self->field), func, false, &field)) return false; if (lvalue) { /* address! */ *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"), ent, field); } else { *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"), ent, field, self->expression.vtype); } if (!*out) { asterror(ast_ctx(self), "failed to create %s instruction (output type %s)", (lvalue ? "ADDRESS" : "FIELD"), type_name[self->expression.vtype]); return false; } if (lvalue) self->expression.outl = *out; else self->expression.outr = *out; /* Hm that should be it... */ return true; } bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *vec; /* in QC this is always an lvalue */ (void)lvalue; if (self->expression.outl) { *out = self->expression.outl; return true; } cgen = self->owner->expression.codegen; if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec)) return false; if (vec->vtype != TYPE_VECTOR && !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR)) { return false; } *out = ir_value_vector_member(vec, self->field); self->expression.outl = *out; return (*out != NULL); } bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *condval; ir_value *dummy; ir_block *cond = func->curblock; ir_block *ontrue; ir_block *onfalse; ir_block *merge; /* We don't output any value, thus also don't care about r/lvalue */ (void)out; (void)lvalue; if (self->expression.outr) { asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n"); return false; } self->expression.outr = (ir_value*)1; /* generate the condition */ func->curblock = cond; cgen = self->cond->expression.codegen; if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval)) return false; /* on-true path */ if (self->on_true) { /* create on-true block */ ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue")); if (!ontrue) return false; /* enter the block */ func->curblock = ontrue; /* generate */ cgen = self->on_true->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy)) return false; } else ontrue = NULL; /* on-false path */ if (self->on_false) { /* create on-false block */ onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse")); if (!onfalse) return false; /* enter the block */ func->curblock = onfalse; /* generate */ cgen = self->on_false->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy)) return false; } else onfalse = NULL; /* Merge block were they all merge in to */ merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif")); if (!merge) return false; /* add jumps ot the merge block */ if (ontrue && !ontrue->final && !ir_block_create_jump(ontrue, merge)) return false; if (onfalse && !onfalse->final && !ir_block_create_jump(onfalse, merge)) return false; /* we create the if here, that way all blocks are ordered :) */ if (!ir_block_create_if(cond, condval, (ontrue ? ontrue : merge), (onfalse ? onfalse : merge))) { return false; } /* Now enter the merge block */ func->curblock = merge; return true; } bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *condval; ir_value *trueval, *falseval; ir_instr *phi; ir_block *cond = func->curblock; ir_block *ontrue; ir_block *onfalse; ir_block *merge; /* Ternary can never create an lvalue... */ if (lvalue) return false; /* In theory it shouldn't be possible to pass through a node twice, but * in case we add any kind of optimization pass for the AST itself, it * may still happen, thus we remember a created ir_value and simply return one * if it already exists. */ if (self->phi_out) { *out = self->phi_out; return true; } /* In the following, contraty to ast_ifthen, we assume both paths exist. */ /* generate the condition */ func->curblock = cond; cgen = self->cond->expression.codegen; if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval)) return false; /* create on-true block */ ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T")); if (!ontrue) return false; else { /* enter the block */ func->curblock = ontrue; /* generate */ cgen = self->on_true->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval)) return false; } /* create on-false block */ onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F")); if (!onfalse) return false; else { /* enter the block */ func->curblock = onfalse; /* generate */ cgen = self->on_false->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval)) return false; } /* create merge block */ merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out")); if (!merge) return false; /* jump to merge block */ if (!ir_block_create_jump(ontrue, merge)) return false; if (!ir_block_create_jump(onfalse, merge)) return false; /* create if instruction */ if (!ir_block_create_if(cond, condval, ontrue, onfalse)) return false; /* Now enter the merge block */ func->curblock = merge; /* Here, now, we need a PHI node * but first some sanity checking... */ if (trueval->vtype != falseval->vtype) { /* error("ternary with different types on the two sides"); */ return false; } /* create PHI */ phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype); if (!phi || !ir_phi_add(phi, ontrue, trueval) || !ir_phi_add(phi, onfalse, falseval)) { return false; } self->phi_out = ir_phi_value(phi); *out = self->phi_out; return true; } bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *dummy = NULL; ir_value *precond = NULL; ir_value *postcond = NULL; /* Since we insert some jumps "late" so we have blocks * ordered "nicely", we need to keep track of the actual end-blocks * of expressions to add the jumps to. */ ir_block *bbody = NULL, *end_bbody = NULL; ir_block *bprecond = NULL, *end_bprecond = NULL; ir_block *bpostcond = NULL, *end_bpostcond = NULL; ir_block *bincrement = NULL, *end_bincrement = NULL; ir_block *bout = NULL, *bin = NULL; /* let's at least move the outgoing block to the end */ size_t bout_id; /* 'break' and 'continue' need to be able to find the right blocks */ ir_block *bcontinue = NULL; ir_block *bbreak = NULL; ir_block *old_bcontinue = NULL; ir_block *old_bbreak = NULL; ir_block *tmpblock = NULL; (void)lvalue; (void)out; if (self->expression.outr) { asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n"); return false; } self->expression.outr = (ir_value*)1; /* NOTE: * Should we ever need some kind of block ordering, better make this function * move blocks around than write a block ordering algorithm later... after all * the ast and ir should work together, not against each other. */ /* initexpr doesn't get its own block, it's pointless, it could create more blocks * anyway if for example it contains a ternary. */ if (self->initexpr) { cgen = self->initexpr->expression.codegen; if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy)) return false; } /* Store the block from which we enter this chaos */ bin = func->curblock; /* The pre-loop condition needs its own block since we * need to be able to jump to the start of that expression. */ if (self->precond) { bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond")); if (!bprecond) return false; /* the pre-loop-condition the least important place to 'continue' at */ bcontinue = bprecond; /* enter */ func->curblock = bprecond; /* generate */ cgen = self->precond->expression.codegen; if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond)) return false; end_bprecond = func->curblock; } else { bprecond = end_bprecond = NULL; } /* Now the next blocks won't be ordered nicely, but we need to * generate them this early for 'break' and 'continue'. */ if (self->increment) { bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment")); if (!bincrement) return false; bcontinue = bincrement; /* increment comes before the pre-loop-condition */ } else { bincrement = end_bincrement = NULL; } if (self->postcond) { bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond")); if (!bpostcond) return false; bcontinue = bpostcond; /* postcond comes before the increment */ } else { bpostcond = end_bpostcond = NULL; } bout_id = func->ir_func->blocks_count; bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop")); if (!bout) return false; bbreak = bout; /* The loop body... */ if (self->body) { bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body")); if (!bbody) return false; /* enter */ func->curblock = bbody; old_bbreak = func->breakblock; old_bcontinue = func->continueblock; func->breakblock = bbreak; func->continueblock = bcontinue; /* generate */ cgen = self->body->expression.codegen; if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy)) return false; end_bbody = func->curblock; func->breakblock = old_bbreak; func->continueblock = old_bcontinue; } /* post-loop-condition */ if (self->postcond) { /* enter */ func->curblock = bpostcond; /* generate */ cgen = self->postcond->expression.codegen; if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond)) return false; end_bpostcond = func->curblock; } /* The incrementor */ if (self->increment) { /* enter */ func->curblock = bincrement; /* generate */ cgen = self->increment->expression.codegen; if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy)) return false; end_bincrement = func->curblock; } /* In any case now, we continue from the outgoing block */ func->curblock = bout; /* Now all blocks are in place */ /* From 'bin' we jump to whatever comes first */ if (bprecond) tmpblock = bprecond; else if (bbody) tmpblock = bbody; else if (bpostcond) tmpblock = bpostcond; else tmpblock = bout; if (!ir_block_create_jump(bin, tmpblock)) return false; /* From precond */ if (bprecond) { ir_block *ontrue, *onfalse; if (bbody) ontrue = bbody; else if (bincrement) ontrue = bincrement; else if (bpostcond) ontrue = bpostcond; else ontrue = bprecond; onfalse = bout; if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse)) return false; } /* from body */ if (bbody) { if (bincrement) tmpblock = bincrement; else if (bpostcond) tmpblock = bpostcond; else if (bprecond) tmpblock = bprecond; else tmpblock = bout; if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock)) return false; } /* from increment */ if (bincrement) { if (bpostcond) tmpblock = bpostcond; else if (bprecond) tmpblock = bprecond; else if (bbody) tmpblock = bbody; else tmpblock = bout; if (!ir_block_create_jump(end_bincrement, tmpblock)) return false; } /* from postcond */ if (bpostcond) { ir_block *ontrue, *onfalse; if (bprecond) ontrue = bprecond; else if (bbody) ontrue = bbody; else if (bincrement) ontrue = bincrement; else ontrue = bpostcond; onfalse = bout; if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse)) return false; } /* Move 'bout' to the end */ if (!ir_function_blocks_remove(func->ir_func, bout_id) || !ir_function_blocks_add(func->ir_func, bout)) { ir_block_delete(bout); return false; } return true; } bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value_vector params; ir_instr *callinstr; size_t i; ir_value *funval = NULL; /* return values are never lvalues */ (void)lvalue; if (self->expression.outr) { *out = self->expression.outr; return true; } cgen = self->func->expression.codegen; if (!(*cgen)((ast_expression*)(self->func), func, false, &funval)) return false; if (!funval) return false; MEM_VECTOR_INIT(¶ms, v); /* parameters */ for (i = 0; i < self->params_count; ++i) { ir_value *param; ast_expression *expr = self->params[i]; cgen = expr->expression.codegen; if (!(*cgen)(expr, func, false, ¶m)) goto error; if (!param) goto error; if (!ir_value_vector_v_add(¶ms, param)) goto error; } callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval); if (!callinstr) goto error; for (i = 0; i < params.v_count; ++i) { if (!ir_call_param(callinstr, params.v[i])) goto error; } *out = ir_call_value(callinstr); self->expression.outr = *out; MEM_VECTOR_CLEAR(¶ms, v); return true; error: MEM_VECTOR_CLEAR(¶ms, v); return false; }