/* * Copyright (C) 2012 * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "gmqcc.h" #include "ir.h" /*********************************************************************** * Type sizes used at multiple points in the IR codegen */ const char *type_name[TYPE_COUNT] = { "void", "string", "float", "vector", "entity", "field", "function", "pointer", "integer", "variant", "struct", "union", "array" }; size_t type_sizeof_[TYPE_COUNT] = { 1, /* TYPE_VOID */ 1, /* TYPE_STRING */ 1, /* TYPE_FLOAT */ 3, /* TYPE_VECTOR */ 1, /* TYPE_ENTITY */ 1, /* TYPE_FIELD */ 1, /* TYPE_FUNCTION */ 1, /* TYPE_POINTER */ 1, /* TYPE_INTEGER */ 3, /* TYPE_VARIANT */ 0, /* TYPE_STRUCT */ 0, /* TYPE_UNION */ 0, /* TYPE_ARRAY */ }; uint16_t type_store_instr[TYPE_COUNT] = { INSTR_STORE_F, /* should use I when having integer support */ INSTR_STORE_S, INSTR_STORE_F, INSTR_STORE_V, INSTR_STORE_ENT, INSTR_STORE_FLD, INSTR_STORE_FNC, INSTR_STORE_ENT, /* should use I */ #if 0 INSTR_STORE_I, /* integer type */ #else INSTR_STORE_F, #endif INSTR_STORE_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; uint16_t field_store_instr[TYPE_COUNT] = { INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_V, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, #if 0 INSTR_STORE_FLD, /* integer type */ #else INSTR_STORE_FLD, #endif INSTR_STORE_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; uint16_t type_storep_instr[TYPE_COUNT] = { INSTR_STOREP_F, /* should use I when having integer support */ INSTR_STOREP_S, INSTR_STOREP_F, INSTR_STOREP_V, INSTR_STOREP_ENT, INSTR_STOREP_FLD, INSTR_STOREP_FNC, INSTR_STOREP_ENT, /* should use I */ #if 0 INSTR_STOREP_ENT, /* integer type */ #else INSTR_STOREP_F, #endif INSTR_STOREP_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; uint16_t type_eq_instr[TYPE_COUNT] = { INSTR_EQ_F, /* should use I when having integer support */ INSTR_EQ_S, INSTR_EQ_F, INSTR_EQ_V, INSTR_EQ_E, INSTR_EQ_E, /* FLD has no comparison */ INSTR_EQ_FNC, INSTR_EQ_E, /* should use I */ #if 0 INSTR_EQ_I, #else INSTR_EQ_F, #endif INSTR_EQ_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; uint16_t type_ne_instr[TYPE_COUNT] = { INSTR_NE_F, /* should use I when having integer support */ INSTR_NE_S, INSTR_NE_F, INSTR_NE_V, INSTR_NE_E, INSTR_NE_E, /* FLD has no comparison */ INSTR_NE_FNC, INSTR_NE_E, /* should use I */ #if 0 INSTR_NE_I, #else INSTR_NE_F, #endif INSTR_NE_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; uint16_t type_not_instr[TYPE_COUNT] = { INSTR_NOT_F, /* should use I when having integer support */ INSTR_NOT_S, INSTR_NOT_F, INSTR_NOT_V, INSTR_NOT_ENT, INSTR_NOT_ENT, INSTR_NOT_FNC, INSTR_NOT_ENT, /* should use I */ #if 0 INSTR_NOT_I, /* integer type */ #else INSTR_NOT_F, #endif INSTR_NOT_V, /* variant, should never be accessed */ AINSTR_END, /* struct */ AINSTR_END, /* union */ AINSTR_END, /* array */ }; /* protos */ static void ir_gen_extparam(ir_builder *ir); /* error functions */ static void irerror(lex_ctx ctx, const char *msg, ...) { va_list ap; va_start(ap, msg); con_cvprintmsg((void*)&ctx, LVL_ERROR, "internal error", msg, ap); va_end(ap); } static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...) { bool r; va_list ap; va_start(ap, fmt); r = vcompile_warning(ctx, warntype, fmt, ap); va_end(ap); return r; } /*********************************************************************** * Vector utility functions */ bool GMQCC_WARN vec_ir_value_find(ir_value **vec, ir_value *what, size_t *idx) { size_t i; size_t len = vec_size(vec); for (i = 0; i < len; ++i) { if (vec[i] == what) { if (idx) *idx = i; return true; } } return false; } bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx) { size_t i; size_t len = vec_size(vec); for (i = 0; i < len; ++i) { if (vec[i] == what) { if (idx) *idx = i; return true; } } return false; } bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx) { size_t i; size_t len = vec_size(vec); for (i = 0; i < len; ++i) { if (vec[i] == what) { if (idx) *idx = i; return true; } } return false; } /*********************************************************************** * IR Builder */ static void ir_block_delete_quick(ir_block* self); static void ir_instr_delete_quick(ir_instr *self); static void ir_function_delete_quick(ir_function *self); ir_builder* ir_builder_new(const char *modulename) { ir_builder* self; self = (ir_builder*)mem_a(sizeof(*self)); if (!self) return NULL; self->functions = NULL; self->globals = NULL; self->fields = NULL; self->extparams = NULL; self->filenames = NULL; self->filestrings = NULL; self->htglobals = util_htnew(IR_HT_SIZE); self->htfields = util_htnew(IR_HT_SIZE); self->htfunctions = util_htnew(IR_HT_SIZE); self->str_immediate = 0; self->name = NULL; if (!ir_builder_set_name(self, modulename)) { mem_d(self); return NULL; } return self; } void ir_builder_delete(ir_builder* self) { size_t i; util_htdel(self->htglobals); util_htdel(self->htfields); util_htdel(self->htfunctions); mem_d((void*)self->name); for (i = 0; i != vec_size(self->functions); ++i) { ir_function_delete_quick(self->functions[i]); } vec_free(self->functions); for (i = 0; i != vec_size(self->extparams); ++i) { ir_value_delete(self->extparams[i]); } vec_free(self->extparams); for (i = 0; i != vec_size(self->globals); ++i) { ir_value_delete(self->globals[i]); } vec_free(self->globals); for (i = 0; i != vec_size(self->fields); ++i) { ir_value_delete(self->fields[i]); } vec_free(self->fields); vec_free(self->filenames); vec_free(self->filestrings); mem_d(self); } bool ir_builder_set_name(ir_builder *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } ir_function* ir_builder_get_function(ir_builder *self, const char *name) { return (ir_function*)util_htget(self->htfunctions, name); } ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype) { ir_function *fn = ir_builder_get_function(self, name); if (fn) { return NULL; } fn = ir_function_new(self, outtype); if (!ir_function_set_name(fn, name)) { ir_function_delete(fn); return NULL; } vec_push(self->functions, fn); util_htset(self->htfunctions, name, fn); fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION); if (!fn->value) { ir_function_delete(fn); return NULL; } fn->value->hasvalue = true; fn->value->outtype = outtype; fn->value->constval.vfunc = fn; fn->value->context = fn->context; return fn; } ir_value* ir_builder_get_global(ir_builder *self, const char *name) { return (ir_value*)util_htget(self->htglobals, name); } ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype) { ir_value *ve; if (name && name[0] != '#') { ve = ir_builder_get_global(self, name); if (ve) { return NULL; } } ve = ir_value_var(name, store_global, vtype); vec_push(self->globals, ve); util_htset(self->htglobals, name, ve); return ve; } ir_value* ir_builder_get_field(ir_builder *self, const char *name) { return (ir_value*)util_htget(self->htfields, name); } ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype) { ir_value *ve = ir_builder_get_field(self, name); if (ve) { return NULL; } ve = ir_value_var(name, store_global, TYPE_FIELD); ve->fieldtype = vtype; vec_push(self->fields, ve); util_htset(self->htfields, name, ve); return ve; } /*********************************************************************** *IR Function */ bool ir_function_naive_phi(ir_function*); void ir_function_enumerate(ir_function*); bool ir_function_calculate_liferanges(ir_function*); bool ir_function_allocate_locals(ir_function*); ir_function* ir_function_new(ir_builder* owner, int outtype) { ir_function *self; self = (ir_function*)mem_a(sizeof(*self)); if (!self) return NULL; memset(self, 0, sizeof(*self)); self->name = NULL; if (!ir_function_set_name(self, "<@unnamed>")) { mem_d(self); return NULL; } self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->outtype = outtype; self->value = NULL; self->builtin = 0; self->params = NULL; self->blocks = NULL; self->values = NULL; self->locals = NULL; self->code_function_def = -1; self->allocated_locals = 0; self->run_id = 0; return self; } bool ir_function_set_name(ir_function *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } static void ir_function_delete_quick(ir_function *self) { size_t i; mem_d((void*)self->name); for (i = 0; i != vec_size(self->blocks); ++i) ir_block_delete_quick(self->blocks[i]); vec_free(self->blocks); vec_free(self->params); for (i = 0; i != vec_size(self->values); ++i) ir_value_delete(self->values[i]); vec_free(self->values); for (i = 0; i != vec_size(self->locals); ++i) ir_value_delete(self->locals[i]); vec_free(self->locals); /* self->value is deleted by the builder */ mem_d(self); } void ir_function_delete(ir_function *self) { size_t i; mem_d((void*)self->name); for (i = 0; i != vec_size(self->blocks); ++i) ir_block_delete(self->blocks[i]); vec_free(self->blocks); vec_free(self->params); for (i = 0; i != vec_size(self->values); ++i) ir_value_delete(self->values[i]); vec_free(self->values); for (i = 0; i != vec_size(self->locals); ++i) ir_value_delete(self->locals[i]); vec_free(self->locals); /* self->value is deleted by the builder */ mem_d(self); } void ir_function_collect_value(ir_function *self, ir_value *v) { vec_push(self->values, v); } ir_block* ir_function_create_block(lex_ctx ctx, ir_function *self, const char *label) { ir_block* bn = ir_block_new(self, label); bn->context = ctx; vec_push(self->blocks, bn); return bn; } static bool instr_is_operation(uint16_t op) { return ( (op >= INSTR_MUL_F && op <= INSTR_GT) || (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) || (op == INSTR_ADDRESS) || (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) || (op >= INSTR_AND && op <= INSTR_BITOR) ); } bool ir_function_pass_peephole(ir_function *self) { size_t b; for (b = 0; b < vec_size(self->blocks); ++b) { size_t i; ir_block *block = self->blocks[b]; for (i = 0; i < vec_size(block->instr); ++i) { ir_instr *inst; inst = block->instr[i]; if (i >= 1 && (inst->opcode >= INSTR_STORE_F && inst->opcode <= INSTR_STORE_FNC)) { ir_instr *store; ir_instr *oper; ir_value *value; store = inst; oper = block->instr[i-1]; if (!instr_is_operation(oper->opcode)) continue; value = oper->_ops[0]; /* only do it for SSA values */ if (value->store != store_value) continue; /* don't optimize out the temp if it's used later again */ if (vec_size(value->reads) != 1) continue; /* The very next store must use this value */ if (value->reads[0] != store) continue; /* And of course the store must _read_ from it, so it's in * OP 1 */ if (store->_ops[1] != value) continue; ++opts_optimizationcount[OPTIM_PEEPHOLE]; (void)!ir_instr_op(oper, 0, store->_ops[0], true); vec_remove(block->instr, i, 1); ir_instr_delete(store); } else if (inst->opcode == VINSTR_COND) { /* COND on a value resulting from a NOT could * remove the NOT and swap its operands */ while (true) { ir_block *tmp; size_t inotid; ir_instr *inot; ir_value *value; value = inst->_ops[0]; if (value->store != store_value || vec_size(value->reads) != 1 || value->reads[0] != inst) { break; } inot = value->writes[0]; if (inot->_ops[0] != value || inot->opcode < INSTR_NOT_F || inot->opcode > INSTR_NOT_FNC || inot->opcode == INSTR_NOT_V) /* can't do this one */ { break; } /* count */ ++opts_optimizationcount[OPTIM_PEEPHOLE]; /* change operand */ (void)!ir_instr_op(inst, 0, inot->_ops[1], false); /* remove NOT */ tmp = inot->owner; for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) { if (tmp->instr[inotid] == inot) break; } if (inotid >= vec_size(tmp->instr)) { compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out"); return false; } vec_remove(tmp->instr, inotid, 1); ir_instr_delete(inot); /* swap ontrue/onfalse */ tmp = inst->bops[0]; inst->bops[0] = inst->bops[1]; inst->bops[1] = tmp; } continue; } } } return true; } bool ir_function_pass_tailrecursion(ir_function *self) { size_t b, p; for (b = 0; b < vec_size(self->blocks); ++b) { ir_value *funcval; ir_instr *ret, *call, *store = NULL; ir_block *block = self->blocks[b]; if (!block->final || vec_size(block->instr) < 2) continue; ret = block->instr[vec_size(block->instr)-1]; if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN) continue; call = block->instr[vec_size(block->instr)-2]; if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) { /* account for the unoptimized * CALL * STORE %return, %tmp * RETURN %tmp * version */ if (vec_size(block->instr) < 3) continue; store = call; call = block->instr[vec_size(block->instr)-3]; } if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8) continue; if (store) { /* optimize out the STORE */ if (ret->_ops[0] && ret->_ops[0] == store->_ops[0] && store->_ops[1] == call->_ops[0]) { ++opts_optimizationcount[OPTIM_PEEPHOLE]; call->_ops[0] = store->_ops[0]; vec_remove(block->instr, vec_size(block->instr) - 2, 1); ir_instr_delete(store); } else continue; } if (!call->_ops[0]) continue; funcval = call->_ops[1]; if (!funcval) continue; if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self) continue; /* now we have a CALL and a RET, check if it's a tailcall */ if (ret->_ops[0] && call->_ops[0] != ret->_ops[0]) continue; ++opts_optimizationcount[OPTIM_TAIL_RECURSION]; vec_shrinkby(block->instr, 2); block->final = false; /* open it back up */ /* emite parameter-stores */ for (p = 0; p < vec_size(call->params); ++p) { /* assert(call->params_count <= self->locals_count); */ if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) { irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p); return false; } } if (!ir_block_create_jump(block, call->context, self->blocks[0])) { irerror(call->context, "failed to create tailcall jump"); return false; } ir_instr_delete(call); ir_instr_delete(ret); } return true; } bool ir_function_finalize(ir_function *self) { if (self->builtin) return true; if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) { if (!ir_function_pass_peephole(self)) { irerror(self->context, "generic optimization pass broke something in `%s`", self->name); return false; } } if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) { if (!ir_function_pass_tailrecursion(self)) { irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name); return false; } } if (!ir_function_naive_phi(self)) return false; ir_function_enumerate(self); if (!ir_function_calculate_liferanges(self)) return false; if (!ir_function_allocate_locals(self)) return false; return true; } ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param) { ir_value *ve; if (param && vec_size(self->locals) && self->locals[vec_size(self->locals)-1]->store != store_param) { irerror(self->context, "cannot add parameters after adding locals"); return NULL; } ve = ir_value_var(name, (param ? store_param : store_local), vtype); vec_push(self->locals, ve); return ve; } /*********************************************************************** *IR Block */ ir_block* ir_block_new(ir_function* owner, const char *name) { ir_block *self; self = (ir_block*)mem_a(sizeof(*self)); if (!self) return NULL; memset(self, 0, sizeof(*self)); self->label = NULL; if (name && !ir_block_set_label(self, name)) { mem_d(self); return NULL; } self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->final = false; self->instr = NULL; self->entries = NULL; self->exits = NULL; self->eid = 0; self->is_return = false; self->run_id = 0; self->living = NULL; self->generated = false; return self; } static void ir_block_delete_quick(ir_block* self) { size_t i; if (self->label) mem_d(self->label); for (i = 0; i != vec_size(self->instr); ++i) ir_instr_delete_quick(self->instr[i]); vec_free(self->instr); vec_free(self->entries); vec_free(self->exits); vec_free(self->living); mem_d(self); } void ir_block_delete(ir_block* self) { size_t i; if (self->label) mem_d(self->label); for (i = 0; i != vec_size(self->instr); ++i) ir_instr_delete(self->instr[i]); vec_free(self->instr); vec_free(self->entries); vec_free(self->exits); vec_free(self->living); mem_d(self); } bool ir_block_set_label(ir_block *self, const char *name) { if (self->label) mem_d((void*)self->label); self->label = util_strdup(name); return !!self->label; } /*********************************************************************** *IR Instructions */ ir_instr* ir_instr_new(lex_ctx ctx, ir_block* owner, int op) { ir_instr *self; self = (ir_instr*)mem_a(sizeof(*self)); if (!self) return NULL; self->owner = owner; self->context = ctx; self->opcode = op; self->_ops[0] = NULL; self->_ops[1] = NULL; self->_ops[2] = NULL; self->bops[0] = NULL; self->bops[1] = NULL; self->phi = NULL; self->params = NULL; self->eid = 0; self->likely = true; return self; } static void ir_instr_delete_quick(ir_instr *self) { vec_free(self->phi); vec_free(self->params); mem_d(self); } void ir_instr_delete(ir_instr *self) { size_t i; /* The following calls can only delete from * vectors, we still want to delete this instruction * so ignore the return value. Since with the warn_unused_result attribute * gcc doesn't care about an explicit: (void)foo(); to ignore the result, * I have to improvise here and use if(foo()); */ for (i = 0; i < vec_size(self->phi); ++i) { size_t idx; if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx)) vec_remove(self->phi[i].value->writes, idx, 1); if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx)) vec_remove(self->phi[i].value->reads, idx, 1); } vec_free(self->phi); for (i = 0; i < vec_size(self->params); ++i) { size_t idx; if (vec_ir_instr_find(self->params[i]->writes, self, &idx)) vec_remove(self->params[i]->writes, idx, 1); if (vec_ir_instr_find(self->params[i]->reads, self, &idx)) vec_remove(self->params[i]->reads, idx, 1); } vec_free(self->params); (void)!ir_instr_op(self, 0, NULL, false); (void)!ir_instr_op(self, 1, NULL, false); (void)!ir_instr_op(self, 2, NULL, false); mem_d(self); } bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing) { if (self->_ops[op]) { size_t idx; if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx)) vec_remove(self->_ops[op]->writes, idx, 1); else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx)) vec_remove(self->_ops[op]->reads, idx, 1); } if (v) { if (writing) vec_push(v->writes, self); else vec_push(v->reads, self); } self->_ops[op] = v; return true; } /*********************************************************************** *IR Value */ void ir_value_code_setaddr(ir_value *self, int32_t gaddr) { self->code.globaladdr = gaddr; if (self->members[0]) self->members[0]->code.globaladdr = gaddr; if (self->members[1]) self->members[1]->code.globaladdr = gaddr; if (self->members[2]) self->members[2]->code.globaladdr = gaddr; } int32_t ir_value_code_addr(const ir_value *self) { if (self->store == store_return) return OFS_RETURN + self->code.addroffset; return self->code.globaladdr + self->code.addroffset; } ir_value* ir_value_var(const char *name, int storetype, int vtype) { ir_value *self; self = (ir_value*)mem_a(sizeof(*self)); self->vtype = vtype; self->fieldtype = TYPE_VOID; self->outtype = TYPE_VOID; self->store = storetype; self->reads = NULL; self->writes = NULL; self->cvq = CV_NONE; self->hasvalue = false; self->context.file = "<@no context>"; self->context.line = 0; self->name = NULL; if (name && !ir_value_set_name(self, name)) { irerror(self->context, "out of memory"); mem_d(self); return NULL; } memset(&self->constval, 0, sizeof(self->constval)); memset(&self->code, 0, sizeof(self->code)); self->members[0] = NULL; self->members[1] = NULL; self->members[2] = NULL; self->memberof = NULL; self->unique_life = false; self->life = NULL; return self; } ir_value* ir_value_vector_member(ir_value *self, unsigned int member) { char *name; size_t len; ir_value *m; if (member >= 3) return NULL; if (self->members[member]) return self->members[member]; len = strlen(self->name); name = (char*)mem_a(len + 3); memcpy(name, self->name, len); name[len+0] = '_'; name[len+1] = 'x' + member; name[len+2] = '\0'; if (self->vtype == TYPE_VECTOR) { m = ir_value_var(name, self->store, TYPE_FLOAT); mem_d(name); if (!m) return NULL; m->context = self->context; self->members[member] = m; m->code.addroffset = member; } else if (self->vtype == TYPE_FIELD) { if (self->fieldtype != TYPE_VECTOR) return NULL; m = ir_value_var(name, self->store, TYPE_FIELD); mem_d(name); if (!m) return NULL; m->fieldtype = TYPE_FLOAT; m->context = self->context; self->members[member] = m; m->code.addroffset = member; } else { irerror(self->context, "invalid member access on %s", self->name); return NULL; } m->memberof = self; return m; } static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self) { if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR) return type_sizeof_[TYPE_VECTOR]; return type_sizeof_[self->vtype]; } ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype) { ir_value *v = ir_value_var(name, storetype, vtype); if (!v) return NULL; ir_function_collect_value(owner, v); return v; } void ir_value_delete(ir_value* self) { size_t i; if (self->name) mem_d((void*)self->name); if (self->hasvalue) { if (self->vtype == TYPE_STRING) mem_d((void*)self->constval.vstring); } for (i = 0; i < 3; ++i) { if (self->members[i]) ir_value_delete(self->members[i]); } vec_free(self->reads); vec_free(self->writes); vec_free(self->life); mem_d(self); } bool ir_value_set_name(ir_value *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } bool ir_value_set_float(ir_value *self, float f) { if (self->vtype != TYPE_FLOAT) return false; self->constval.vfloat = f; self->hasvalue = true; return true; } bool ir_value_set_func(ir_value *self, int f) { if (self->vtype != TYPE_FUNCTION) return false; self->constval.vint = f; self->hasvalue = true; return true; } bool ir_value_set_vector(ir_value *self, vector v) { if (self->vtype != TYPE_VECTOR) return false; self->constval.vvec = v; self->hasvalue = true; return true; } bool ir_value_set_field(ir_value *self, ir_value *fld) { if (self->vtype != TYPE_FIELD) return false; self->constval.vpointer = fld; self->hasvalue = true; return true; } static char *ir_strdup(const char *str) { if (str && !*str) { /* actually dup empty strings */ char *out = mem_a(1); *out = 0; return out; } return util_strdup(str); } bool ir_value_set_string(ir_value *self, const char *str) { if (self->vtype != TYPE_STRING) return false; self->constval.vstring = ir_strdup(str); self->hasvalue = true; return true; } #if 0 bool ir_value_set_int(ir_value *self, int i) { if (self->vtype != TYPE_INTEGER) return false; self->constval.vint = i; self->hasvalue = true; return true; } #endif bool ir_value_lives(ir_value *self, size_t at) { size_t i; for (i = 0; i < vec_size(self->life); ++i) { ir_life_entry_t *life = &self->life[i]; if (life->start <= at && at <= life->end) return true; if (life->start > at) /* since it's ordered */ return false; } return false; } bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e) { size_t k; vec_push(self->life, e); for (k = vec_size(self->life)-1; k > idx; --k) self->life[k] = self->life[k-1]; self->life[idx] = e; return true; } bool ir_value_life_merge(ir_value *self, size_t s) { size_t i; ir_life_entry_t *life = NULL; ir_life_entry_t *before = NULL; ir_life_entry_t new_entry; /* Find the first range >= s */ for (i = 0; i < vec_size(self->life); ++i) { before = life; life = &self->life[i]; if (life->start > s) break; } /* nothing found? append */ if (i == vec_size(self->life)) { ir_life_entry_t e; if (life && life->end+1 == s) { /* previous life range can be merged in */ life->end++; return true; } if (life && life->end >= s) return false; e.start = e.end = s; vec_push(self->life, e); return true; } /* found */ if (before) { if (before->end + 1 == s && life->start - 1 == s) { /* merge */ before->end = life->end; vec_remove(self->life, i, 1); return true; } if (before->end + 1 == s) { /* extend before */ before->end++; return true; } /* already contained */ if (before->end >= s) return false; } /* extend */ if (life->start - 1 == s) { life->start--; return true; } /* insert a new entry */ new_entry.start = new_entry.end = s; return ir_value_life_insert(self, i, new_entry); } bool ir_value_life_merge_into(ir_value *self, const ir_value *other) { size_t i, myi; if (!vec_size(other->life)) return true; if (!vec_size(self->life)) { size_t count = vec_size(other->life); ir_life_entry_t *life = vec_add(self->life, count); memcpy(life, other->life, count * sizeof(*life)); return true; } myi = 0; for (i = 0; i < vec_size(other->life); ++i) { const ir_life_entry_t *life = &other->life[i]; while (true) { ir_life_entry_t *entry = &self->life[myi]; if (life->end+1 < entry->start) { /* adding an interval before entry */ if (!ir_value_life_insert(self, myi, *life)) return false; ++myi; break; } if (life->start < entry->start && life->end+1 >= entry->start) { /* starts earlier and overlaps */ entry->start = life->start; } if (life->end > entry->end && life->start <= entry->end+1) { /* ends later and overlaps */ entry->end = life->end; } /* see if our change combines it with the next ranges */ while (myi+1 < vec_size(self->life) && entry->end+1 >= self->life[1+myi].start) { /* overlaps with (myi+1) */ if (entry->end < self->life[1+myi].end) entry->end = self->life[1+myi].end; vec_remove(self->life, myi+1, 1); entry = &self->life[myi]; } /* see if we're after the entry */ if (life->start > entry->end) { ++myi; /* append if we're at the end */ if (myi >= vec_size(self->life)) { vec_push(self->life, *life); break; } /* otherweise check the next range */ continue; } break; } } return true; } bool ir_values_overlap(const ir_value *a, const ir_value *b) { /* For any life entry in A see if it overlaps with * any life entry in B. * Note that the life entries are orderes, so we can make a * more efficient algorithm there than naively translating the * statement above. */ ir_life_entry_t *la, *lb, *enda, *endb; /* first of all, if either has no life range, they cannot clash */ if (!vec_size(a->life) || !vec_size(b->life)) return false; la = a->life; lb = b->life; enda = la + vec_size(a->life); endb = lb + vec_size(b->life); while (true) { /* check if the entries overlap, for that, * both must start before the other one ends. */ if (la->start < lb->end && lb->start < la->end) { return true; } /* entries are ordered * one entry is earlier than the other * that earlier entry will be moved forward */ if (la->start < lb->start) { /* order: A B, move A forward * check if we hit the end with A */ if (++la == enda) break; } else /* if (lb->start < la->start) actually <= */ { /* order: B A, move B forward * check if we hit the end with B */ if (++lb == endb) break; } } return false; } /*********************************************************************** *IR main operations */ static bool ir_check_unreachable(ir_block *self) { /* The IR should never have to deal with unreachable code */ if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/) return true; irerror(self->context, "unreachable statement (%s)", self->label); return false; } bool ir_block_create_store_op(ir_block *self, lex_ctx ctx, int op, ir_value *target, ir_value *what) { ir_instr *in; if (!ir_check_unreachable(self)) return false; if (target->store == store_value && (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) { irerror(self->context, "cannot store to an SSA value"); irerror(self->context, "trying to store: %s <- %s", target->name, what->name); irerror(self->context, "instruction: %s", asm_instr[op].m); return false; } in = ir_instr_new(ctx, self, op); if (!in) return false; if (!ir_instr_op(in, 0, target, true) || !ir_instr_op(in, 1, what, false)) { ir_instr_delete(in); return false; } vec_push(self->instr, in); return true; } bool ir_block_create_store(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what) { int op = 0; int vtype; if (target->vtype == TYPE_VARIANT) vtype = what->vtype; else vtype = target->vtype; #if 0 if (vtype == TYPE_FLOAT && what->vtype == TYPE_INTEGER) op = INSTR_CONV_ITOF; else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT) op = INSTR_CONV_FTOI; #endif op = type_store_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR) op = INSTR_STORE_V; } return ir_block_create_store_op(self, ctx, op, target, what); } bool ir_block_create_storep(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what) { int op = 0; int vtype; if (target->vtype != TYPE_POINTER) return false; /* storing using pointer - target is a pointer, type must be * inferred from source */ vtype = what->vtype; op = type_storep_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR) op = INSTR_STOREP_V; } return ir_block_create_store_op(self, ctx, op, target, what); } bool ir_block_create_return(ir_block *self, lex_ctx ctx, ir_value *v) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->final = true; self->is_return = true; in = ir_instr_new(ctx, self, INSTR_RETURN); if (!in) return false; if (v && !ir_instr_op(in, 0, v, false)) { ir_instr_delete(in); return false; } vec_push(self->instr, in); return true; } bool ir_block_create_if(ir_block *self, lex_ctx ctx, ir_value *v, ir_block *ontrue, ir_block *onfalse) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->final = true; /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/ in = ir_instr_new(ctx, self, VINSTR_COND); if (!in) return false; if (!ir_instr_op(in, 0, v, false)) { ir_instr_delete(in); return false; } in->bops[0] = ontrue; in->bops[1] = onfalse; vec_push(self->instr, in); vec_push(self->exits, ontrue); vec_push(self->exits, onfalse); vec_push(ontrue->entries, self); vec_push(onfalse->entries, self); return true; } bool ir_block_create_jump(ir_block *self, lex_ctx ctx, ir_block *to) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->final = true; in = ir_instr_new(ctx, self, VINSTR_JUMP); if (!in) return false; in->bops[0] = to; vec_push(self->instr, in); vec_push(self->exits, to); vec_push(to->entries, self); return true; } bool ir_block_create_goto(ir_block *self, lex_ctx ctx, ir_block *to) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->final = true; in = ir_instr_new(ctx, self, INSTR_GOTO); if (!in) return false; in->bops[0] = to; vec_push(self->instr, in); vec_push(self->exits, to); vec_push(to->entries, self); return true; } ir_instr* ir_block_create_phi(ir_block *self, lex_ctx ctx, const char *label, int ot) { ir_value *out; ir_instr *in; if (!ir_check_unreachable(self)) return false; in = ir_instr_new(ctx, self, VINSTR_PHI); if (!in) return NULL; out = ir_value_out(self->owner, label, store_value, ot); if (!out) { ir_instr_delete(in); return NULL; } if (!ir_instr_op(in, 0, out, true)) { ir_instr_delete(in); ir_value_delete(out); return NULL; } vec_push(self->instr, in); return in; } ir_value* ir_phi_value(ir_instr *self) { return self->_ops[0]; } void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v) { ir_phi_entry_t pe; if (!vec_ir_block_find(self->owner->entries, b, NULL)) { /* Must not be possible to cause this, otherwise the AST * is doing something wrong. */ irerror(self->context, "Invalid entry block for PHI"); abort(); } pe.value = v; pe.from = b; vec_push(v->reads, self); vec_push(self->phi, pe); } /* call related code */ ir_instr* ir_block_create_call(ir_block *self, lex_ctx ctx, const char *label, ir_value *func, bool noreturn) { ir_value *out; ir_instr *in; if (!ir_check_unreachable(self)) return false; in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0)); if (!in) return NULL; if (noreturn) { self->final = true; self->is_return = true; } out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype); if (!out) { ir_instr_delete(in); return NULL; } if (!ir_instr_op(in, 0, out, true) || !ir_instr_op(in, 1, func, false)) { ir_instr_delete(in); ir_value_delete(out); return NULL; } vec_push(self->instr, in); /* if (noreturn) { if (!ir_block_create_return(self, ctx, NULL)) { compile_error(ctx, "internal error: failed to generate dummy-return instruction"); ir_instr_delete(in); return NULL; } } */ return in; } ir_value* ir_call_value(ir_instr *self) { return self->_ops[0]; } void ir_call_param(ir_instr* self, ir_value *v) { vec_push(self->params, v); vec_push(v->reads, self); } /* binary op related code */ ir_value* ir_block_create_binop(ir_block *self, lex_ctx ctx, const char *label, int opcode, ir_value *left, ir_value *right) { int ot = TYPE_VOID; switch (opcode) { case INSTR_ADD_F: case INSTR_SUB_F: case INSTR_DIV_F: case INSTR_MUL_F: case INSTR_MUL_V: case INSTR_AND: case INSTR_OR: #if 0 case INSTR_AND_I: case INSTR_AND_IF: case INSTR_AND_FI: case INSTR_OR_I: case INSTR_OR_IF: case INSTR_OR_FI: #endif case INSTR_BITAND: case INSTR_BITOR: #if 0 case INSTR_SUB_S: /* -- offset of string as float */ case INSTR_MUL_IF: case INSTR_MUL_FI: case INSTR_DIV_IF: case INSTR_DIV_FI: case INSTR_BITOR_IF: case INSTR_BITOR_FI: case INSTR_BITAND_FI: case INSTR_BITAND_IF: case INSTR_EQ_I: case INSTR_NE_I: #endif ot = TYPE_FLOAT; break; #if 0 case INSTR_ADD_I: case INSTR_ADD_IF: case INSTR_ADD_FI: case INSTR_SUB_I: case INSTR_SUB_FI: case INSTR_SUB_IF: case INSTR_MUL_I: case INSTR_DIV_I: case INSTR_BITAND_I: case INSTR_BITOR_I: case INSTR_XOR_I: case INSTR_RSHIFT_I: case INSTR_LSHIFT_I: ot = TYPE_INTEGER; break; #endif case INSTR_ADD_V: case INSTR_SUB_V: case INSTR_MUL_VF: case INSTR_MUL_FV: #if 0 case INSTR_DIV_VF: case INSTR_MUL_IV: case INSTR_MUL_VI: #endif ot = TYPE_VECTOR; break; #if 0 case INSTR_ADD_SF: ot = TYPE_POINTER; break; #endif default: /* ranges: */ /* boolean operations result in floats */ if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT) ot = TYPE_FLOAT; else if (opcode >= INSTR_LE && opcode <= INSTR_GT) ot = TYPE_FLOAT; #if 0 else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI) ot = TYPE_FLOAT; #endif break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return NULL; } return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot); } ir_value* ir_block_create_unary(ir_block *self, lex_ctx ctx, const char *label, int opcode, ir_value *operand) { int ot = TYPE_FLOAT; switch (opcode) { case INSTR_NOT_F: case INSTR_NOT_V: case INSTR_NOT_S: case INSTR_NOT_ENT: case INSTR_NOT_FNC: #if 0 case INSTR_NOT_I: #endif ot = TYPE_FLOAT; break; /* QC doesn't have other unary operations. We expect extensions to fill * the above list, otherwise we assume out-type = in-type, eg for an * unary minus */ default: ot = operand->vtype; break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return NULL; } /* let's use the general instruction creator and pass NULL for OPB */ return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot); } ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx ctx, const char *label, int op, ir_value *a, ir_value *b, int outype) { ir_instr *instr; ir_value *out; out = ir_value_out(self->owner, label, store_value, outype); if (!out) return NULL; instr = ir_instr_new(ctx, self, op); if (!instr) { ir_value_delete(out); return NULL; } if (!ir_instr_op(instr, 0, out, true) || !ir_instr_op(instr, 1, a, false) || !ir_instr_op(instr, 2, b, false) ) { goto on_error; } vec_push(self->instr, instr); return out; on_error: ir_instr_delete(instr); ir_value_delete(out); return NULL; } ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field) { ir_value *v; /* Support for various pointer types todo if so desired */ if (ent->vtype != TYPE_ENTITY) return NULL; if (field->vtype != TYPE_FIELD) return NULL; v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER); v->fieldtype = field->fieldtype; return v; } ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field, int outype) { int op; if (ent->vtype != TYPE_ENTITY) return NULL; /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */ if (field->vtype != TYPE_FIELD) return NULL; switch (outype) { case TYPE_FLOAT: op = INSTR_LOAD_F; break; case TYPE_VECTOR: op = INSTR_LOAD_V; break; case TYPE_STRING: op = INSTR_LOAD_S; break; case TYPE_FIELD: op = INSTR_LOAD_FLD; break; case TYPE_ENTITY: op = INSTR_LOAD_ENT; break; case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break; #if 0 case TYPE_POINTER: op = INSTR_LOAD_I; break; case TYPE_INTEGER: op = INSTR_LOAD_I; break; #endif default: irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]); return NULL; } return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype); } ir_value* ir_block_create_add(ir_block *self, lex_ctx ctx, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: irerror(self->context, "invalid type for ir_block_create_add: %s", type_name[l]); return NULL; case TYPE_FLOAT: op = INSTR_ADD_F; break; #if 0 case TYPE_INTEGER: op = INSTR_ADD_I; break; #endif case TYPE_VECTOR: op = INSTR_ADD_V; break; } } else { #if 0 if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_ADD_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_ADD_IF; else #endif { irerror(self->context, "invalid type for ir_block_create_add: %s", type_name[l]); return NULL; } } return ir_block_create_binop(self, ctx, label, op, left, right); } ir_value* ir_block_create_sub(ir_block *self, lex_ctx ctx, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: irerror(self->context, "invalid type for ir_block_create_sub: %s", type_name[l]); return NULL; case TYPE_FLOAT: op = INSTR_SUB_F; break; #if 0 case TYPE_INTEGER: op = INSTR_SUB_I; break; #endif case TYPE_VECTOR: op = INSTR_SUB_V; break; } } else { #if 0 if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_SUB_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_SUB_IF; else #endif { irerror(self->context, "invalid type for ir_block_create_sub: %s", type_name[l]); return NULL; } } return ir_block_create_binop(self, ctx, label, op, left, right); } ir_value* ir_block_create_mul(ir_block *self, lex_ctx ctx, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: irerror(self->context, "invalid type for ir_block_create_mul: %s", type_name[l]); return NULL; case TYPE_FLOAT: op = INSTR_MUL_F; break; #if 0 case TYPE_INTEGER: op = INSTR_MUL_I; break; #endif case TYPE_VECTOR: op = INSTR_MUL_V; break; } } else { if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) op = INSTR_MUL_VF; else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) ) op = INSTR_MUL_FV; #if 0 else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) ) op = INSTR_MUL_VI; else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) ) op = INSTR_MUL_IV; else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_MUL_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_MUL_IF; #endif else { irerror(self->context, "invalid type for ir_block_create_mul: %s", type_name[l]); return NULL; } } return ir_block_create_binop(self, ctx, label, op, left, right); } ir_value* ir_block_create_div(ir_block *self, lex_ctx ctx, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: irerror(self->context, "invalid type for ir_block_create_div: %s", type_name[l]); return NULL; case TYPE_FLOAT: op = INSTR_DIV_F; break; #if 0 case TYPE_INTEGER: op = INSTR_DIV_I; break; #endif } } else { #if 0 if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) op = INSTR_DIV_VF; else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_DIV_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_DIV_IF; else #endif { irerror(self->context, "invalid type for ir_block_create_div: %s", type_name[l]); return NULL; } } return ir_block_create_binop(self, ctx, label, op, left, right); } /* PHI resolving breaks the SSA, and must thus be the last * step before life-range calculation. */ static bool ir_block_naive_phi(ir_block *self); bool ir_function_naive_phi(ir_function *self) { size_t i; for (i = 0; i < vec_size(self->blocks); ++i) { if (!ir_block_naive_phi(self->blocks[i])) return false; } return true; } #if 0 static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what) { ir_instr *instr; size_t i; /* create a store */ if (!ir_block_create_store(block, old, what)) return false; /* we now move it up */ instr = vec_last(block->instr); for (i = vec_size(block->instr)-1; i > iid; --i) block->instr[i] = block->instr[i-1]; block->instr[i] = instr; return true; } #endif static bool ir_block_naive_phi(ir_block *self) { size_t i, p; /*, w;*/ /* FIXME: optionally, create_phi can add the phis * to a list so we don't need to loop through blocks * - anyway: "don't optimize YET" */ for (i = 0; i < vec_size(self->instr); ++i) { ir_instr *instr = self->instr[i]; if (instr->opcode != VINSTR_PHI) continue; vec_remove(self->instr, i, 1); --i; /* NOTE: i+1 below */ for (p = 0; p < vec_size(instr->phi); ++p) { ir_value *v = instr->phi[p].value; ir_block *b = instr->phi[p].from; if (v->store == store_value && vec_size(v->reads) == 1 && vec_size(v->writes) == 1) { /* replace the value */ if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true)) return false; } else { /* force a move instruction */ ir_instr *prevjump = vec_last(b->instr); vec_pop(b->instr); b->final = false; instr->_ops[0]->store = store_global; if (!ir_block_create_store(b, instr->context, instr->_ops[0], v)) return false; instr->_ops[0]->store = store_value; vec_push(b->instr, prevjump); b->final = true; } #if 0 ir_value *v = instr->phi[p].value; for (w = 0; w < vec_size(v->writes); ++w) { ir_value *old; if (!v->writes[w]->_ops[0]) continue; /* When the write was to a global, we have to emit a mov */ old = v->writes[w]->_ops[0]; /* The original instruction now writes to the PHI target local */ if (v->writes[w]->_ops[0] == v) v->writes[w]->_ops[0] = instr->_ops[0]; if (old->store != store_value && old->store != store_local && old->store != store_param) { /* If it originally wrote to a global we need to store the value * there as welli */ if (!ir_naive_phi_emit_store(self, i+1, old, v)) return false; if (i+1 < vec_size(self->instr)) instr = self->instr[i+1]; else instr = NULL; /* In case I forget and access instr later, it'll be NULL * when it's a problem, to make sure we crash, rather than accessing * invalid data. */ } else { /* If it didn't, we can replace all reads by the phi target now. */ size_t r; for (r = 0; r < vec_size(old->reads); ++r) { size_t op; ir_instr *ri = old->reads[r]; for (op = 0; op < vec_size(ri->phi); ++op) { if (ri->phi[op].value == old) ri->phi[op].value = v; } for (op = 0; op < 3; ++op) { if (ri->_ops[op] == old) ri->_ops[op] = v; } } } } #endif } ir_instr_delete(instr); } return true; } /*********************************************************************** *IR Temp allocation code * Propagating value life ranges by walking through the function backwards * until no more changes are made. * In theory this should happen once more than once for every nested loop * level. * Though this implementation might run an additional time for if nests. */ /* Enumerate instructions used by value's life-ranges */ static void ir_block_enumerate(ir_block *self, size_t *_eid) { size_t i; size_t eid = *_eid; for (i = 0; i < vec_size(self->instr); ++i) { self->instr[i]->eid = eid++; } *_eid = eid; } /* Enumerate blocks and instructions. * The block-enumeration is unordered! * We do not really use the block enumreation, however * the instruction enumeration is important for life-ranges. */ void ir_function_enumerate(ir_function *self) { size_t i; size_t instruction_id = 0; for (i = 0; i < vec_size(self->blocks); ++i) { self->blocks[i]->eid = i; self->blocks[i]->run_id = 0; ir_block_enumerate(self->blocks[i], &instruction_id); } } static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed); bool ir_function_calculate_liferanges(ir_function *self) { size_t i; bool changed; do { self->run_id++; changed = false; for (i = 0; i != vec_size(self->blocks); ++i) { if (self->blocks[i]->is_return) { vec_free(self->blocks[i]->living); if (!ir_block_life_propagate(self->blocks[i], NULL, &changed)) return false; } } } while (changed); if (vec_size(self->blocks)) { ir_block *block = self->blocks[0]; for (i = 0; i < vec_size(block->living); ++i) { ir_value *v = block->living[i]; if (v->store != store_local) continue; if ((v->members[0] && v->members[1] && v->members[2])) { /* all vector members have been accessed - only treat this as uninitialized * if any of them is also uninitialized. */ if (!vec_ir_value_find(block->living, v->members[0], NULL) && !vec_ir_value_find(block->living, v->members[1], NULL) && !vec_ir_value_find(block->living, v->members[2], NULL)) { continue; } } if (v->memberof) { /* A member is only uninitialized if the whole vector is also uninitialized */ if (!vec_ir_value_find(block->living, v->memberof, NULL)) continue; } if (irwarning(v->context, WARN_USED_UNINITIALIZED, "variable `%s` may be used uninitialized in this function", v->name)) { return false; } } } return true; } /* Local-value allocator * After finishing creating the liferange of all values used in a function * we can allocate their global-positions. * This is the counterpart to register-allocation in register machines. */ typedef struct { ir_value **locals; size_t *sizes; size_t *positions; bool *unique; } function_allocator; static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var) { ir_value *slot; size_t vsize = ir_value_sizeof(var); slot = ir_value_var("reg", store_global, var->vtype); if (!slot) return false; if (!ir_value_life_merge_into(slot, var)) goto localerror; vec_push(alloc->locals, slot); vec_push(alloc->sizes, vsize); vec_push(alloc->unique, var->unique_life); return true; localerror: ir_value_delete(slot); return false; } bool ir_function_allocate_locals(ir_function *self) { size_t i, a; bool retval = true; size_t pos; ir_value *slot; const ir_value *v; function_allocator alloc; if (!vec_size(self->locals) && !vec_size(self->values)) return true; alloc.locals = NULL; alloc.sizes = NULL; alloc.positions = NULL; alloc.unique = NULL; for (i = 0; i < vec_size(self->locals); ++i) { #if 0 if (!OPTS_OPTIMIZATION(OPTIM_LOCALTEMPS)) #endif self->locals[i]->unique_life = true; if (!function_allocator_alloc(&alloc, self->locals[i])) goto error; } /* Allocate a slot for any value that still exists */ for (i = 0; i < vec_size(self->values); ++i) { v = self->values[i]; if (!vec_size(v->life)) continue; for (a = 0; a < vec_size(alloc.locals); ++a) { /* if it's reserved for a unique liferange: skip */ if (alloc.unique[a]) continue; slot = alloc.locals[a]; /* never resize parameters * will be required later when overlapping temps + locals */ if (a < vec_size(self->params) && alloc.sizes[a] < ir_value_sizeof(v)) { continue; } if (ir_values_overlap(v, slot)) continue; if (!ir_value_life_merge_into(slot, v)) goto error; /* adjust size for this slot */ if (alloc.sizes[a] < ir_value_sizeof(v)) alloc.sizes[a] = ir_value_sizeof(v); self->values[i]->code.local = a; break; } if (a >= vec_size(alloc.locals)) { self->values[i]->code.local = vec_size(alloc.locals); if (!function_allocator_alloc(&alloc, v)) goto error; } } if (!alloc.sizes) { goto cleanup; } /* Adjust slot positions based on sizes */ vec_push(alloc.positions, 0); if (vec_size(alloc.sizes)) pos = alloc.positions[0] + alloc.sizes[0]; else pos = 0; for (i = 1; i < vec_size(alloc.sizes); ++i) { pos = alloc.positions[i-1] + alloc.sizes[i-1]; vec_push(alloc.positions, pos); } self->allocated_locals = pos + vec_last(alloc.sizes); /* Locals need to know their new position */ for (i = 0; i < vec_size(self->locals); ++i) { self->locals[i]->code.local = alloc.positions[i]; } /* Take over the actual slot positions on values */ for (i = 0; i < vec_size(self->values); ++i) { self->values[i]->code.local = alloc.positions[self->values[i]->code.local]; } goto cleanup; error: retval = false; cleanup: for (i = 0; i < vec_size(alloc.locals); ++i) ir_value_delete(alloc.locals[i]); vec_free(alloc.unique); vec_free(alloc.locals); vec_free(alloc.sizes); vec_free(alloc.positions); return retval; } /* Get information about which operand * is read from, or written to. */ static void ir_op_read_write(int op, size_t *read, size_t *write) { switch (op) { case VINSTR_JUMP: case INSTR_GOTO: *write = 0; *read = 0; break; case INSTR_IF: case INSTR_IFNOT: #if 0 case INSTR_IF_S: case INSTR_IFNOT_S: #endif case INSTR_RETURN: case VINSTR_COND: *write = 0; *read = 1; break; case INSTR_STOREP_F: case INSTR_STOREP_V: case INSTR_STOREP_S: case INSTR_STOREP_ENT: case INSTR_STOREP_FLD: case INSTR_STOREP_FNC: *write = 0; *read = 7; break; default: *write = 1; *read = 6; break; }; } static bool ir_block_living_add_instr(ir_block *self, size_t eid) { size_t i; bool changed = false; bool tempbool; for (i = 0; i != vec_size(self->living); ++i) { tempbool = ir_value_life_merge(self->living[i], eid); /* debug if (tempbool) irerror(self->context, "block_living_add_instr() value instruction added %s: %i", self->living[i]->_name, (int)eid); */ changed = changed || tempbool; } return changed; } static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed) { size_t i; (void)changed; /* values which have been read in a previous iteration are now * in the "living" array even if the previous block doesn't use them. * So we have to remove whatever does not exist in the previous block. * They will be re-added on-read, but the liferange merge won't cause * a change. for (i = 0; i < vec_size(self->living); ++i) { if (!vec_ir_value_find(prev->living, self->living[i], NULL)) { vec_remove(self->living, i, 1); --i; } } */ /* Whatever the previous block still has in its living set * must now be added to ours as well. */ for (i = 0; i < vec_size(prev->living); ++i) { if (vec_ir_value_find(self->living, prev->living[i], NULL)) continue; vec_push(self->living, prev->living[i]); /* irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name); */ } return true; } static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed) { ir_instr *instr; ir_value *value; bool tempbool; size_t i, o, p; /* bitmasks which operands are read from or written to */ size_t read, write; char dbg_ind[16] = { '#', '0' }; (void)dbg_ind; if (prev) { if (!ir_block_life_prop_previous(self, prev, changed)) return false; } i = vec_size(self->instr); while (i) { --i; instr = self->instr[i]; /* PHI operands are always read operands */ for (p = 0; p < vec_size(instr->phi); ++p) { value = instr->phi[p].value; if (!vec_ir_value_find(self->living, value, NULL)) vec_push(self->living, value); } /* call params are read operands too */ for (p = 0; p < vec_size(instr->params); ++p) { value = instr->params[p]; if (!vec_ir_value_find(self->living, value, NULL)) vec_push(self->living, value); } /* See which operands are read and write operands */ ir_op_read_write(instr->opcode, &read, &write); if (instr->opcode == INSTR_MUL_VF) { /* the float source will get an additional lifetime */ tempbool = ir_value_life_merge(instr->_ops[2], instr->eid+1); *changed = *changed || tempbool; } else if (instr->opcode == INSTR_MUL_FV) { /* the float source will get an additional lifetime */ tempbool = ir_value_life_merge(instr->_ops[1], instr->eid+1); *changed = *changed || tempbool; } /* Go through the 3 main operands */ for (o = 0; o < 3; ++o) { if (!instr->_ops[o]) /* no such operand */ continue; value = instr->_ops[o]; /* We only care about locals */ /* we also calculate parameter liferanges so that locals * can take up parameter slots */ if (value->store != store_value && value->store != store_local && value->store != store_param) continue; /* read operands */ if (read & (1<living, value, NULL)) vec_push(self->living, value); } /* write operands */ /* When we write to a local, we consider it "dead" for the * remaining upper part of the function, since in SSA a value * can only be written once (== created) */ if (write & (1<living, value, &idx); if (!in_living) { /* If the value isn't alive it hasn't been read before... */ /* TODO: See if the warning can be emitted during parsing or AST processing * otherwise have warning printed here. * IF printing a warning here: include filecontext_t, * and make sure it's only printed once * since this function is run multiple times. */ /* For now: debug info: */ /* con_err( "Value only written %s\n", value->name); */ tempbool = ir_value_life_merge(value, instr->eid); *changed = *changed || tempbool; /* ir_instr_dump(instr, dbg_ind, printf); abort(); */ } else { /* since 'living' won't contain it * anymore, merge the value, since * (A) doesn't. */ tempbool = ir_value_life_merge(value, instr->eid); /* if (tempbool) con_err( "value added id %s %i\n", value->name, (int)instr->eid); */ *changed = *changed || tempbool; /* Then remove */ vec_remove(self->living, idx, 1); } } } /* (A) */ tempbool = ir_block_living_add_instr(self, instr->eid); /*con_err( "living added values\n");*/ *changed = *changed || tempbool; } if (self->run_id == self->owner->run_id) return true; self->run_id = self->owner->run_id; for (i = 0; i < vec_size(self->entries); ++i) { ir_block *entry = self->entries[i]; ir_block_life_propagate(entry, self, changed); } return true; } /*********************************************************************** *IR Code-Generation * * Since the IR has the convention of putting 'write' operands * at the beginning, we have to rotate the operands of instructions * properly in order to generate valid QCVM code. * * Having destinations at a fixed position is more convenient. In QC * this is *mostly* OPC, but FTE adds at least 2 instructions which * read from from OPA, and store to OPB rather than OPC. Which is * partially the reason why the implementation of these instructions * in darkplaces has been delayed for so long. * * Breaking conventions is annoying... */ static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal); static bool gen_global_field(ir_value *global) { if (global->hasvalue) { ir_value *fld = global->constval.vpointer; if (!fld) { irerror(global->context, "Invalid field constant with no field: %s", global->name); return false; } /* copy the field's value */ ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, fld->code.fieldaddr); if (global->fieldtype == TYPE_VECTOR) { vec_push(code_globals, fld->code.fieldaddr+1); vec_push(code_globals, fld->code.fieldaddr+2); } } else { ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, 0); if (global->fieldtype == TYPE_VECTOR) { vec_push(code_globals, 0); vec_push(code_globals, 0); } } if (global->code.globaladdr < 0) return false; return true; } static bool gen_global_pointer(ir_value *global) { if (global->hasvalue) { ir_value *target = global->constval.vpointer; if (!target) { irerror(global->context, "Invalid pointer constant: %s", global->name); /* NULL pointers are pointing to the NULL constant, which also * sits at address 0, but still has an ir_value for itself. */ return false; } /* Here, relocations ARE possible - in fteqcc-enhanced-qc: * void() foo; <- proto * void() *fooptr = &foo; * void() foo = { code } */ if (!target->code.globaladdr) { /* FIXME: Check for the constant nullptr ir_value! * because then code.globaladdr being 0 is valid. */ irerror(global->context, "FIXME: Relocation support"); return false; } ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, target->code.globaladdr); } else { ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, 0); } if (global->code.globaladdr < 0) return false; return true; } static bool gen_blocks_recursive(ir_function *func, ir_block *block) { prog_section_statement stmt; ir_instr *instr; ir_block *target; ir_block *ontrue; ir_block *onfalse; size_t stidx; size_t i; tailcall: block->generated = true; block->code_start = vec_size(code_statements); for (i = 0; i < vec_size(block->instr); ++i) { instr = block->instr[i]; if (instr->opcode == VINSTR_PHI) { irerror(block->context, "cannot generate virtual instruction (phi)"); return false; } if (instr->opcode == VINSTR_JUMP) { target = instr->bops[0]; /* for uncoditional jumps, if the target hasn't been generated * yet, we generate them right here. */ if (!target->generated) { block = target; goto tailcall; } /* otherwise we generate a jump instruction */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = (target->code_start) - vec_size(code_statements); stmt.o2.s1 = 0; stmt.o3.s1 = 0; if (stmt.o1.s1 != 1) code_push_statement(&stmt, instr->context.line); /* no further instructions can be in this block */ return true; } if (instr->opcode == VINSTR_COND) { ontrue = instr->bops[0]; onfalse = instr->bops[1]; /* TODO: have the AST signal which block should * come first: eg. optimize IFs without ELSE... */ stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]); stmt.o2.u1 = 0; stmt.o3.s1 = 0; if (ontrue->generated) { stmt.opcode = INSTR_IF; stmt.o2.s1 = (ontrue->code_start) - vec_size(code_statements); if (stmt.o2.s1 != 1) code_push_statement(&stmt, instr->context.line); } if (onfalse->generated) { stmt.opcode = INSTR_IFNOT; stmt.o2.s1 = (onfalse->code_start) - vec_size(code_statements); if (stmt.o2.s1 != 1) code_push_statement(&stmt, instr->context.line); } if (!ontrue->generated) { if (onfalse->generated) { block = ontrue; goto tailcall; } } if (!onfalse->generated) { if (ontrue->generated) { block = onfalse; goto tailcall; } } /* neither ontrue nor onfalse exist */ stmt.opcode = INSTR_IFNOT; if (!instr->likely) { /* Honor the likelyhood hint */ ir_block *tmp = onfalse; stmt.opcode = INSTR_IF; onfalse = ontrue; ontrue = tmp; } stidx = vec_size(code_statements); code_push_statement(&stmt, instr->context.line); /* on false we jump, so add ontrue-path */ if (!gen_blocks_recursive(func, ontrue)) return false; /* fixup the jump address */ code_statements[stidx].o2.s1 = vec_size(code_statements) - stidx; /* generate onfalse path */ if (onfalse->generated) { /* fixup the jump address */ code_statements[stidx].o2.s1 = (onfalse->code_start) - (stidx); if (code_statements[stidx].o2.s1 == 1) { code_statements[stidx] = code_statements[stidx+1]; if (code_statements[stidx].o1.s1 < 0) code_statements[stidx].o1.s1++; code_pop_statement(); } stmt.opcode = vec_last(code_statements).opcode; if (stmt.opcode == INSTR_GOTO || stmt.opcode == INSTR_IF || stmt.opcode == INSTR_IFNOT || stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) { /* no use jumping from here */ return true; } /* may have been generated in the previous recursive call */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = (onfalse->code_start) - vec_size(code_statements); stmt.o2.s1 = 0; stmt.o3.s1 = 0; if (stmt.o1.s1 != 1) code_push_statement(&stmt, instr->context.line); return true; } else if (code_statements[stidx].o2.s1 == 1) { code_statements[stidx] = code_statements[stidx+1]; if (code_statements[stidx].o1.s1 < 0) code_statements[stidx].o1.s1++; code_pop_statement(); } /* if not, generate now */ block = onfalse; goto tailcall; } if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) || instr->opcode == VINSTR_NRCALL) { /* Trivial call translation: * copy all params to OFS_PARM* * if the output's storetype is not store_return, * add append a STORE instruction! * * NOTES on how to do it better without much trouble: * -) The liferanges! * Simply check the liferange of all parameters for * other CALLs. For each param with no CALL in its * liferange, we can store it in an OFS_PARM at * generation already. This would even include later * reuse.... probably... :) */ size_t p, first; ir_value *retvalue; first = vec_size(instr->params); if (first > 8) first = 8; for (p = 0; p < first; ++p) { ir_value *param = instr->params[p]; stmt.opcode = INSTR_STORE_F; stmt.o3.u1 = 0; if (param->vtype == TYPE_FIELD) stmt.opcode = field_store_instr[param->fieldtype]; else stmt.opcode = type_store_instr[param->vtype]; stmt.o1.u1 = ir_value_code_addr(param); stmt.o2.u1 = OFS_PARM0 + 3 * p; code_push_statement(&stmt, instr->context.line); } /* Now handle extparams */ first = vec_size(instr->params); for (; p < first; ++p) { ir_builder *ir = func->owner; ir_value *param = instr->params[p]; ir_value *targetparam; if (p-8 >= vec_size(ir->extparams)) ir_gen_extparam(ir); targetparam = ir->extparams[p-8]; stmt.opcode = INSTR_STORE_F; stmt.o3.u1 = 0; if (param->vtype == TYPE_FIELD) stmt.opcode = field_store_instr[param->fieldtype]; else stmt.opcode = type_store_instr[param->vtype]; stmt.o1.u1 = ir_value_code_addr(param); stmt.o2.u1 = ir_value_code_addr(targetparam); code_push_statement(&stmt, instr->context.line); } stmt.opcode = INSTR_CALL0 + vec_size(instr->params); if (stmt.opcode > INSTR_CALL8) stmt.opcode = INSTR_CALL8; stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); stmt.o2.u1 = 0; stmt.o3.u1 = 0; code_push_statement(&stmt, instr->context.line); retvalue = instr->_ops[0]; if (retvalue && retvalue->store != store_return && vec_size(retvalue->life)) { /* not to be kept in OFS_RETURN */ if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS)) stmt.opcode = field_store_instr[retvalue->fieldtype]; else stmt.opcode = type_store_instr[retvalue->vtype]; stmt.o1.u1 = OFS_RETURN; stmt.o2.u1 = ir_value_code_addr(retvalue); stmt.o3.u1 = 0; code_push_statement(&stmt, instr->context.line); } continue; } if (instr->opcode == INSTR_STATE) { irerror(block->context, "TODO: state instruction"); return false; } stmt.opcode = instr->opcode; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; /* This is the general order of operands */ if (instr->_ops[0]) stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]); if (instr->_ops[1]) stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); if (instr->_ops[2]) stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]); if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) { stmt.o1.u1 = stmt.o3.u1; stmt.o3.u1 = 0; } else if ((stmt.opcode >= INSTR_STORE_F && stmt.opcode <= INSTR_STORE_FNC) || (stmt.opcode >= INSTR_STOREP_F && stmt.opcode <= INSTR_STOREP_FNC)) { /* 2-operand instructions with A -> B */ stmt.o2.u1 = stmt.o3.u1; stmt.o3.u1 = 0; /* tiny optimization, don't output * STORE a, a */ if (stmt.o2.u1 == stmt.o1.u1 && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) { ++opts_optimizationcount[OPTIM_PEEPHOLE]; continue; } } code_push_statement(&stmt, instr->context.line); } return true; } static bool gen_function_code(ir_function *self) { ir_block *block; prog_section_statement stmt; /* Starting from entry point, we generate blocks "as they come" * for now. Dead blocks will not be translated obviously. */ if (!vec_size(self->blocks)) { irerror(self->context, "Function '%s' declared without body.", self->name); return false; } block = self->blocks[0]; if (block->generated) return true; if (!gen_blocks_recursive(self, block)) { irerror(self->context, "failed to generate blocks for '%s'", self->name); return false; } /* code_write and qcvm -disasm need to know that the function ends here */ stmt.opcode = INSTR_DONE; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; code_push_statement(&stmt, vec_last(code_linenums)); return true; } static qcint ir_builder_filestring(ir_builder *ir, const char *filename) { /* NOTE: filename pointers are copied, we never strdup them, * thus we can use pointer-comparison to find the string. */ size_t i; qcint str; for (i = 0; i < vec_size(ir->filenames); ++i) { if (ir->filenames[i] == filename) return ir->filestrings[i]; } str = code_genstring(filename); vec_push(ir->filenames, filename); vec_push(ir->filestrings, str); return str; } static bool gen_global_function(ir_builder *ir, ir_value *global) { prog_section_function fun; ir_function *irfun; size_t i; if (!global->hasvalue || (!global->constval.vfunc)) { irerror(global->context, "Invalid state of function-global: not constant: %s", global->name); return false; } irfun = global->constval.vfunc; fun.name = global->code.name; fun.file = ir_builder_filestring(ir, global->context.file); fun.profile = 0; /* always 0 */ fun.nargs = vec_size(irfun->params); if (fun.nargs > 8) fun.nargs = 8; for (i = 0;i < 8; ++i) { if ((int32_t)i >= fun.nargs) fun.argsize[i] = 0; else fun.argsize[i] = type_sizeof_[irfun->params[i]]; } fun.firstlocal = vec_size(code_globals); fun.locals = irfun->allocated_locals; for (i = 0; i < vec_size(irfun->locals); ++i) { if (!ir_builder_gen_global(ir, irfun->locals[i], true)) { irerror(irfun->locals[i]->context, "Failed to generate local %s", irfun->locals[i]->name); return false; } ir_value_code_setaddr(irfun->locals[i], fun.firstlocal + irfun->locals[i]->code.local); } for (i = 0; i < vec_size(irfun->values); ++i) { /* generate code.globaladdr for ssa values */ ir_value *v = irfun->values[i]; ir_value_code_setaddr(v, fun.firstlocal + v->code.local); } for (i = vec_size(code_globals); i < fun.firstlocal + irfun->allocated_locals; ++i) vec_push(code_globals, 0); if (irfun->builtin) fun.entry = irfun->builtin+1; else { irfun->code_function_def = vec_size(code_functions); fun.entry = vec_size(code_statements); } vec_push(code_functions, fun); return true; } static void ir_gen_extparam(ir_builder *ir) { prog_section_def def; ir_value *global; char name[128]; snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparams)+8)); global = ir_value_var(name, store_global, TYPE_VECTOR); def.name = code_genstring(name); def.type = TYPE_VECTOR; def.offset = vec_size(code_globals); vec_push(code_defs, def); ir_value_code_setaddr(global, def.offset); vec_push(code_globals, 0); vec_push(code_globals, 0); vec_push(code_globals, 0); vec_push(ir->extparams, global); } static bool gen_function_extparam_copy(ir_function *self) { size_t i, ext, numparams; ir_builder *ir = self->owner; ir_value *ep; prog_section_statement stmt; numparams = vec_size(self->params); if (!numparams) return true; stmt.opcode = INSTR_STORE_F; stmt.o3.s1 = 0; for (i = 8; i < numparams; ++i) { ext = i - 8; if (ext >= vec_size(ir->extparams)) ir_gen_extparam(ir); ep = ir->extparams[ext]; stmt.opcode = type_store_instr[self->locals[i]->vtype]; if (self->locals[i]->vtype == TYPE_FIELD && self->locals[i]->fieldtype == TYPE_VECTOR) { stmt.opcode = INSTR_STORE_V; } stmt.o1.u1 = ir_value_code_addr(ep); stmt.o2.u1 = ir_value_code_addr(self->locals[i]); code_push_statement(&stmt, self->context.line); } return true; } static bool gen_global_function_code(ir_builder *ir, ir_value *global) { prog_section_function *fundef; ir_function *irfun; (void)ir; irfun = global->constval.vfunc; if (!irfun) { if (global->cvq == CV_NONE) { irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER, "function `%s` has no body and in QC implicitly becomes a function-pointer", global->name); } /* this was a function pointer, don't generate code for those */ return true; } if (irfun->builtin) return true; if (irfun->code_function_def < 0) { irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name); return false; } fundef = &code_functions[irfun->code_function_def]; fundef->entry = vec_size(code_statements); if (!gen_function_extparam_copy(irfun)) { irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name); return false; } if (!gen_function_code(irfun)) { irerror(irfun->context, "Failed to generate code for function %s", irfun->name); return false; } return true; } static void gen_vector_defs(prog_section_def def, const char *name) { char *component; size_t len, i; if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS)) return; def.type = TYPE_FLOAT; len = strlen(name); component = (char*)mem_a(len+3); memcpy(component, name, len); len += 2; component[len-0] = 0; component[len-2] = '_'; component[len-1] = 'x'; for (i = 0; i < 3; ++i) { def.name = code_genstring(component); vec_push(code_defs, def); def.offset++; component[len-1]++; } } static void gen_vector_fields(prog_section_field fld, const char *name) { char *component; size_t len, i; if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS)) return; fld.type = TYPE_FLOAT; len = strlen(name); component = (char*)mem_a(len+3); memcpy(component, name, len); len += 2; component[len-0] = 0; component[len-2] = '_'; component[len-1] = 'x'; for (i = 0; i < 3; ++i) { fld.name = code_genstring(component); vec_push(code_fields, fld); fld.offset++; component[len-1]++; } } static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal) { size_t i; int32_t *iptr; prog_section_def def; def.type = global->vtype; def.offset = vec_size(code_globals); if (global->name) { if (global->name[0] == '#') { if (!self->str_immediate) self->str_immediate = code_genstring("IMMEDIATE"); def.name = global->code.name = self->str_immediate; } else def.name = global->code.name = code_genstring(global->name); } else def.name = 0; switch (global->vtype) { case TYPE_VOID: if (!strcmp(global->name, "end_sys_globals")) { /* TODO: remember this point... all the defs before this one * should be checksummed and added to progdefs.h when we generate it. */ } else if (!strcmp(global->name, "end_sys_fields")) { /* TODO: same as above but for entity-fields rather than globsl */ } else irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`", global->name); /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far * the system fields actually go? Though the engine knows this anyway... * Maybe this could be an -foption * fteqcc creates data for end_sys_* - of size 1, so let's do the same */ ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, 0); /* Add the def */ vec_push(code_defs, def); return true; case TYPE_POINTER: vec_push(code_defs, def); return gen_global_pointer(global); case TYPE_FIELD: vec_push(code_defs, def); gen_vector_defs(def, global->name); return gen_global_field(global); case TYPE_ENTITY: /* fall through */ case TYPE_FLOAT: { ir_value_code_setaddr(global, vec_size(code_globals)); if (global->hasvalue) { iptr = (int32_t*)&global->constval.ivec[0]; vec_push(code_globals, *iptr); } else { vec_push(code_globals, 0); } if (!islocal && global->cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; vec_push(code_defs, def); return global->code.globaladdr >= 0; } case TYPE_STRING: { ir_value_code_setaddr(global, vec_size(code_globals)); if (global->hasvalue) { vec_push(code_globals, code_genstring(global->constval.vstring)); } else { vec_push(code_globals, 0); } if (!islocal && global->cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; vec_push(code_defs, def); return global->code.globaladdr >= 0; } case TYPE_VECTOR: { size_t d; ir_value_code_setaddr(global, vec_size(code_globals)); if (global->hasvalue) { iptr = (int32_t*)&global->constval.ivec[0]; vec_push(code_globals, iptr[0]); if (global->code.globaladdr < 0) return false; for (d = 1; d < type_sizeof_[global->vtype]; ++d) { vec_push(code_globals, iptr[d]); } } else { vec_push(code_globals, 0); if (global->code.globaladdr < 0) return false; for (d = 1; d < type_sizeof_[global->vtype]; ++d) { vec_push(code_globals, 0); } } if (!islocal && global->cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; vec_push(code_defs, def); def.type &= ~DEF_SAVEGLOBAL; gen_vector_defs(def, global->name); return global->code.globaladdr >= 0; } case TYPE_FUNCTION: ir_value_code_setaddr(global, vec_size(code_globals)); if (!global->hasvalue) { vec_push(code_globals, 0); if (global->code.globaladdr < 0) return false; } else { vec_push(code_globals, vec_size(code_functions)); if (!gen_global_function(self, global)) return false; } if (!islocal && global->cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; vec_push(code_defs, def); return true; case TYPE_VARIANT: /* assume biggest type */ ir_value_code_setaddr(global, vec_size(code_globals)); vec_push(code_globals, 0); for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i) vec_push(code_globals, 0); return true; default: /* refuse to create 'void' type or any other fancy business. */ irerror(global->context, "Invalid type for global variable `%s`: %s", global->name, type_name[global->vtype]); return false; } } static void ir_builder_prepare_field(ir_value *field) { field->code.fieldaddr = code_alloc_field(type_sizeof_[field->fieldtype]); } static bool ir_builder_gen_field(ir_builder *self, ir_value *field) { prog_section_def def; prog_section_field fld; (void)self; def.type = (uint16_t)field->vtype; def.offset = (uint16_t)vec_size(code_globals); /* create a global named the same as the field */ if (opts.standard == COMPILER_GMQCC) { /* in our standard, the global gets a dot prefix */ size_t len = strlen(field->name); char name[1024]; /* we really don't want to have to allocate this, and 1024 * bytes is more than enough for a variable/field name */ if (len+2 >= sizeof(name)) { irerror(field->context, "invalid field name size: %u", (unsigned int)len); return false; } name[0] = '.'; memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */ name[len+1] = 0; def.name = code_genstring(name); fld.name = def.name + 1; /* we reuse that string table entry */ } else { /* in plain QC, there cannot be a global with the same name, * and so we also name the global the same. * FIXME: fteqcc should create a global as well * check if it actually uses the same name. Probably does */ def.name = code_genstring(field->name); fld.name = def.name; } field->code.name = def.name; vec_push(code_defs, def); fld.type = field->fieldtype; if (fld.type == TYPE_VOID) { irerror(field->context, "field is missing a type: %s - don't know its size", field->name); return false; } fld.offset = field->code.fieldaddr; vec_push(code_fields, fld); ir_value_code_setaddr(field, vec_size(code_globals)); vec_push(code_globals, fld.offset); if (fld.type == TYPE_VECTOR) { vec_push(code_globals, fld.offset+1); vec_push(code_globals, fld.offset+2); } if (field->fieldtype == TYPE_VECTOR) { gen_vector_defs(def, field->name); gen_vector_fields(fld, field->name); } return field->code.globaladdr >= 0; } bool ir_builder_generate(ir_builder *self, const char *filename) { prog_section_statement stmt; size_t i; char *lnofile = NULL; code_init(); for (i = 0; i < vec_size(self->fields); ++i) { ir_builder_prepare_field(self->fields[i]); } for (i = 0; i < vec_size(self->globals); ++i) { if (!ir_builder_gen_global(self, self->globals[i], false)) { return false; } } for (i = 0; i < vec_size(self->fields); ++i) { if (!ir_builder_gen_field(self, self->fields[i])) { return false; } } /* generate function code */ for (i = 0; i < vec_size(self->globals); ++i) { if (self->globals[i]->vtype == TYPE_FUNCTION) { if (!gen_global_function_code(self, self->globals[i])) { return false; } } } if (vec_size(code_globals) >= 65536) { irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out."); return false; } /* DP errors if the last instruction is not an INSTR_DONE. */ if (vec_last(code_statements).opcode != INSTR_DONE) { stmt.opcode = INSTR_DONE; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; code_push_statement(&stmt, vec_last(code_linenums)); } if (opts.pp_only) return true; if (vec_size(code_statements) != vec_size(code_linenums)) { con_err("Linecounter wrong: %lu != %lu\n", (unsigned long)vec_size(code_statements), (unsigned long)vec_size(code_linenums)); } else if (OPTS_FLAG(LNO)) { char *dot; size_t filelen = strlen(filename); memcpy(vec_add(lnofile, filelen+1), filename, filelen+1); dot = strrchr(lnofile, '.'); if (!dot) { vec_pop(lnofile); } else { vec_shrinkto(lnofile, dot - lnofile); } memcpy(vec_add(lnofile, 5), ".lno", 5); } if (lnofile) con_out("writing '%s' and '%s'...\n", filename, lnofile); else con_out("writing '%s'\n", filename); if (!code_write(filename, lnofile)) { vec_free(lnofile); return false; } vec_free(lnofile); return true; } /*********************************************************************** *IR DEBUG Dump functions... */ #define IND_BUFSZ 1024 #ifdef _MSC_VER # define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE) #endif const char *qc_opname(int op) { if (op < 0) return ""; if (op < (int)( sizeof(asm_instr) / sizeof(asm_instr[0]) )) return asm_instr[op].m; switch (op) { case VINSTR_PHI: return "PHI"; case VINSTR_JUMP: return "JUMP"; case VINSTR_COND: return "COND"; default: return ""; } } void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...)) { size_t i; char indent[IND_BUFSZ]; indent[0] = '\t'; indent[1] = 0; oprintf("module %s\n", b->name); for (i = 0; i < vec_size(b->globals); ++i) { oprintf("global "); if (b->globals[i]->hasvalue) oprintf("%s = ", b->globals[i]->name); ir_value_dump(b->globals[i], oprintf); oprintf("\n"); } for (i = 0; i < vec_size(b->functions); ++i) ir_function_dump(b->functions[i], indent, oprintf); oprintf("endmodule %s\n", b->name); } void ir_function_dump(ir_function *f, char *ind, int (*oprintf)(const char*, ...)) { size_t i; if (f->builtin != 0) { oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin); return; } oprintf("%sfunction %s\n", ind, f->name); strncat(ind, "\t", IND_BUFSZ); if (vec_size(f->locals)) { oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals)); for (i = 0; i < vec_size(f->locals); ++i) { oprintf("%s\t", ind); ir_value_dump(f->locals[i], oprintf); oprintf("\n"); } } oprintf("%sliferanges:\n", ind); for (i = 0; i < vec_size(f->locals); ++i) { size_t l; ir_value *v = f->locals[i]; oprintf("%s\t%s: %s@%i ", ind, v->name, (v->unique_life ? "unique " : ""), (int)v->code.local); for (l = 0; l < vec_size(v->life); ++l) { oprintf("[%i,%i] ", v->life[l].start, v->life[l].end); } oprintf("\n"); } for (i = 0; i < vec_size(f->values); ++i) { size_t l; ir_value *v = f->values[i]; oprintf("%s\t%s: @%i ", ind, v->name, (int)v->code.local); for (l = 0; l < vec_size(v->life); ++l) { oprintf("[%i,%i] ", v->life[l].start, v->life[l].end); } oprintf("\n"); } if (vec_size(f->blocks)) { oprintf("%slife passes (check): %i\n", ind, (int)f->run_id); for (i = 0; i < vec_size(f->blocks); ++i) { if (f->blocks[i]->run_id != f->run_id) { oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id); } ir_block_dump(f->blocks[i], ind, oprintf); } } ind[strlen(ind)-1] = 0; oprintf("%sendfunction %s\n", ind, f->name); } void ir_block_dump(ir_block* b, char *ind, int (*oprintf)(const char*, ...)) { size_t i; oprintf("%s:%s\n", ind, b->label); strncat(ind, "\t", IND_BUFSZ); for (i = 0; i < vec_size(b->instr); ++i) ir_instr_dump(b->instr[i], ind, oprintf); ind[strlen(ind)-1] = 0; } void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...)) { size_t i; oprintf("%s <- phi ", in->_ops[0]->name); for (i = 0; i < vec_size(in->phi); ++i) { oprintf("([%s] : %s) ", in->phi[i].from->label, in->phi[i].value->name); } oprintf("\n"); } void ir_instr_dump(ir_instr *in, char *ind, int (*oprintf)(const char*, ...)) { size_t i; const char *comma = NULL; oprintf("%s (%i) ", ind, (int)in->eid); if (in->opcode == VINSTR_PHI) { dump_phi(in, oprintf); return; } strncat(ind, "\t", IND_BUFSZ); if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) { ir_value_dump(in->_ops[0], oprintf); if (in->_ops[1] || in->_ops[2]) oprintf(" <- "); } if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) { oprintf("CALL%i\t", vec_size(in->params)); } else oprintf("%s\t", qc_opname(in->opcode)); if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) { ir_value_dump(in->_ops[0], oprintf); comma = ",\t"; } else { for (i = 1; i != 3; ++i) { if (in->_ops[i]) { if (comma) oprintf(comma); ir_value_dump(in->_ops[i], oprintf); comma = ",\t"; } } } if (in->bops[0]) { if (comma) oprintf(comma); oprintf("[%s]", in->bops[0]->label); comma = ",\t"; } if (in->bops[1]) oprintf("%s[%s]", comma, in->bops[1]->label); if (vec_size(in->params)) { oprintf("\tparams: "); for (i = 0; i != vec_size(in->params); ++i) { oprintf("%s, ", in->params[i]->name); } } oprintf("\n"); ind[strlen(ind)-1] = 0; } void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...)) { oprintf("\""); for (; *str; ++str) { switch (*str) { case '\n': oprintf("\\n"); break; case '\r': oprintf("\\r"); break; case '\t': oprintf("\\t"); break; case '\v': oprintf("\\v"); break; case '\f': oprintf("\\f"); break; case '\b': oprintf("\\b"); break; case '\a': oprintf("\\a"); break; case '\\': oprintf("\\\\"); break; case '"': oprintf("\\\""); break; default: oprintf("%c", *str); break; } } oprintf("\""); } void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...)) { if (v->hasvalue) { switch (v->vtype) { default: case TYPE_VOID: oprintf("(void)"); break; case TYPE_FUNCTION: oprintf("fn:%s", v->name); break; case TYPE_FLOAT: oprintf("%g", v->constval.vfloat); break; case TYPE_VECTOR: oprintf("'%g %g %g'", v->constval.vvec.x, v->constval.vvec.y, v->constval.vvec.z); break; case TYPE_ENTITY: oprintf("(entity)"); break; case TYPE_STRING: ir_value_dump_string(v->constval.vstring, oprintf); break; #if 0 case TYPE_INTEGER: oprintf("%i", v->constval.vint); break; #endif case TYPE_POINTER: oprintf("&%s", v->constval.vpointer->name); break; } } else { oprintf("%s", v->name); } } void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...)) { size_t i; oprintf("Life of %12s:", self->name); for (i = 0; i < vec_size(self->life); ++i) { oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end); } }