Added my awesome MT1997 PRNG, and use it instead of stdio's rand()/srand() .. which are implementation specific .. and simply unsafe (for example one of the compilers at work simply has it's standard library implementation of rand() return 0 always (which is perfectly conformant)).

This commit is contained in:
Dale Weiler 2012-12-24 01:43:27 +00:00
parent 0a57c408c0
commit fa155f8a42
4 changed files with 184 additions and 7 deletions

14
ftepp.c
View file

@ -77,8 +77,8 @@ typedef struct {
* Implement the predef subsystem now. We can do this safely with the * Implement the predef subsystem now. We can do this safely with the
* help of lexer contexts. * help of lexer contexts.
*/ */
static int ftepp_predef_countval = 0; static uint32_t ftepp_predef_countval = 0;
static int ftepp_predef_randval = 0; static uint32_t ftepp_predef_randval = 0;
/* __LINE__ */ /* __LINE__ */
char *ftepp_predef_line(lex_file *context) { char *ftepp_predef_line(lex_file *context) {
@ -98,7 +98,7 @@ char *ftepp_predef_file(lex_file *context) {
/* __COUNTER_LAST__ */ /* __COUNTER_LAST__ */
char *ftepp_predef_counterlast(lex_file *context) { char *ftepp_predef_counterlast(lex_file *context) {
char *value = (char*)mem_a(128); char *value = (char*)mem_a(128);
sprintf(value, "%d", ftepp_predef_countval); sprintf(value, "%u", ftepp_predef_countval);
(void)context; (void)context;
return value; return value;
@ -107,7 +107,7 @@ char *ftepp_predef_counterlast(lex_file *context) {
char *ftepp_predef_counter(lex_file *context) { char *ftepp_predef_counter(lex_file *context) {
char *value = (char*)mem_a(128); char *value = (char*)mem_a(128);
ftepp_predef_countval ++; ftepp_predef_countval ++;
sprintf(value, "%d", ftepp_predef_countval); sprintf(value, "%u", ftepp_predef_countval);
(void)context; (void)context;
return value; return value;
@ -115,8 +115,8 @@ char *ftepp_predef_counter(lex_file *context) {
/* __RANDOM__ */ /* __RANDOM__ */
char *ftepp_predef_random(lex_file *context) { char *ftepp_predef_random(lex_file *context) {
char *value = (char*)mem_a(128); char *value = (char*)mem_a(128);
ftepp_predef_randval = rand() % 0xFFFF; /* short int */ ftepp_predef_randval = (util_rand() % 0xFF) + 1;
sprintf(value, "%d", ftepp_predef_randval); sprintf(value, "%u", ftepp_predef_randval);
(void)context; (void)context;
return value; return value;
@ -124,7 +124,7 @@ char *ftepp_predef_random(lex_file *context) {
/* __RANDOM_LAST__ */ /* __RANDOM_LAST__ */
char *ftepp_predef_randomlast(lex_file *context) { char *ftepp_predef_randomlast(lex_file *context) {
char *value = (char*)mem_a(128); char *value = (char*)mem_a(128);
sprintf(value, "%d", ftepp_predef_randval); sprintf(value, "%u", ftepp_predef_randval);
(void)context; (void)context;
return value; return value;

View file

@ -260,6 +260,9 @@ size_t util_strtononcmd (const char *, char *, size_t);
uint16_t util_crc16(uint16_t crc, const char *data, size_t len); uint16_t util_crc16(uint16_t crc, const char *data, size_t len);
void util_seed(uint32_t);
uint32_t util_rand();
#ifdef NOTRACK #ifdef NOTRACK
# define mem_a(x) malloc (x) # define mem_a(x) malloc (x)
# define mem_d(x) free ((void*)x) # define mem_d(x) free ((void*)x)

3
main.c
View file

@ -23,6 +23,7 @@
*/ */
#include "gmqcc.h" #include "gmqcc.h"
#include "lexer.h" #include "lexer.h"
#include <time.h>
/* TODO: cleanup this whole file .. it's a fuckign mess */ /* TODO: cleanup this whole file .. it's a fuckign mess */
@ -505,6 +506,8 @@ int main(int argc, char **argv) {
con_init (); con_init ();
opts_init("progs.dat", COMPILER_GMQCC, (1024 << 3)); opts_init("progs.dat", COMPILER_GMQCC, (1024 << 3));
util_seed(time(0));
if (!options_parse(argc, argv)) { if (!options_parse(argc, argv)) {
return usage(); return usage();
} }

171
util.c
View file

@ -538,3 +538,174 @@ void util_htdel(hash_table_t *ht) {
mem_d(ht->table); mem_d(ht->table);
mem_d(ht); mem_d(ht);
} }
/*
* Implementation of the Mersenne twister PRNG (pseudo random numer
* generator). Implementation of MT19937. Has a period of 2^19937-1
* which is a Mersenne Prime (hence the name).
*
* Implemented from specification and original paper:
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
*
* This code is placed in the public domain by me personally
* (Dale Weiler, a.k.a graphitemaster).
*/
#define MT_SIZE 624
#define MT_PERIOD 397
#define MT_SPACE (MT_SIZE - MT_PERIOD)
static uint32_t mt_state[MT_SIZE];
static size_t mt_index = 0;
static GMQCC_INLINE void mt_generate() {
/*
* The loop has been unrolled here: the original paper and implemenation
* Called for the following code:
* for (register unsigned i = 0; i < MT_SIZE; ++i) {
* register uint32_t load;
* load = (0x80000000 & mt_state[i]) // most significant 32nd bit
* load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit
*
* mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1);
*
* if (load & 1) mt_state[i] ^= 0x9908B0DF;
* }
*
* This essentially is a waste: we have two modulus operations, and
* a branch that is executed every iteration from [0, MT_SIZE).
*
* Please see: http://www.quadibloc.com/crypto/co4814.htm for more
* information on how this clever trick works.
*/
static const uint32_t matrix[2] = {
0x00000000,
0x9908B0Df
};
/*
* This register gives up a little more speed by instructing the compiler
* to force these into CPU registers (they're counters for indexing mt_state
* which we can force the compiler to generate prefetch instructions for)
*/
register uint32_t y;
register uint32_t i;
/*
* Said loop has been unrolled for MT_SPACE (226 iterations), opposed
* to [0, MT_SIZE) (634 iterations).
*/
for (i = 0; i < MT_SPACE; ++i) {
y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
i ++; /* loop unroll */
y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
}
/*
* collapsing the walls unrolled (evenly dividing 396 [632-227 = 396
* = 2*2*3*3*11])
*/
i = MT_SPACE;
while (i < MT_SIZE - 1) {
/*
* We expand this 11 times .. manually, no macros are required
* here. This all fits in the CPU cache.
*/
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
++i;
}
/* i = mt_state[623] */
y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]);
mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1];
}
void util_seed(uint32_t value) {
/*
* We seed the mt_state with a LCG (linear congruential generator)
* We're operating exactly on exactly m=32, so there is no need to
* use modulus.
*
* The multipler of choice is 0x6C07865, also knows as the Borosh-
* Niederreiter multipler used for modulus 2^32. More can be read
* about this in Knuth's TAOCP Volume 2, page 106.
*
* If you don't own TAOCP something is wrong with you :-) .. so I
* also provided a link to the original paper by Borosh and
* Niederreiter. It's called "Optional Multipliers for PRNG by The
* Linear Congruential Method" (1983).
* http://en.wikipedia.org/wiki/Linear_congruential_generator
*
* From said page, it says the following:
* "A common Mersenne twister implementation, interestingly enough
* used an LCG to generate seed data."
*
* Remarks:
* The data we're operating on is 32-bits for the mt_state array, so
* there is no masking required with 0xFFFFFFFF
*/
register size_t i;
mt_state[0] = value;
for (i = 1; i < MT_SIZE; ++i)
mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i;
}
uint32_t util_rand() {
register uint32_t y;
/*
* This is inlined with any sane compiler (I checked)
* for some reason though, SubC seems to be generating invalid
* code when it inlines this.
*/
if (!mt_index)
mt_generate();
y = mt_state[mt_index];
/* Standard tempering */
y ^= y >> 11; /* +7 */
y ^= y << 7 & 0x9D2C5680; /* +4 */
y ^= y << 15 & 0xEFC60000; /* -4 */
y ^= y >> 18; /* -7 */
if(++mt_index == MT_SIZE)
mt_index = 0;
return y;
}