mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-23 12:22:26 +00:00
Added my awesome MT1997 PRNG, and use it instead of stdio's rand()/srand() .. which are implementation specific .. and simply unsafe (for example one of the compilers at work simply has it's standard library implementation of rand() return 0 always (which is perfectly conformant)).
This commit is contained in:
parent
0a57c408c0
commit
fa155f8a42
4 changed files with 184 additions and 7 deletions
14
ftepp.c
14
ftepp.c
|
@ -77,8 +77,8 @@ typedef struct {
|
|||
* Implement the predef subsystem now. We can do this safely with the
|
||||
* help of lexer contexts.
|
||||
*/
|
||||
static int ftepp_predef_countval = 0;
|
||||
static int ftepp_predef_randval = 0;
|
||||
static uint32_t ftepp_predef_countval = 0;
|
||||
static uint32_t ftepp_predef_randval = 0;
|
||||
|
||||
/* __LINE__ */
|
||||
char *ftepp_predef_line(lex_file *context) {
|
||||
|
@ -98,7 +98,7 @@ char *ftepp_predef_file(lex_file *context) {
|
|||
/* __COUNTER_LAST__ */
|
||||
char *ftepp_predef_counterlast(lex_file *context) {
|
||||
char *value = (char*)mem_a(128);
|
||||
sprintf(value, "%d", ftepp_predef_countval);
|
||||
sprintf(value, "%u", ftepp_predef_countval);
|
||||
|
||||
(void)context;
|
||||
return value;
|
||||
|
@ -107,7 +107,7 @@ char *ftepp_predef_counterlast(lex_file *context) {
|
|||
char *ftepp_predef_counter(lex_file *context) {
|
||||
char *value = (char*)mem_a(128);
|
||||
ftepp_predef_countval ++;
|
||||
sprintf(value, "%d", ftepp_predef_countval);
|
||||
sprintf(value, "%u", ftepp_predef_countval);
|
||||
(void)context;
|
||||
|
||||
return value;
|
||||
|
@ -115,8 +115,8 @@ char *ftepp_predef_counter(lex_file *context) {
|
|||
/* __RANDOM__ */
|
||||
char *ftepp_predef_random(lex_file *context) {
|
||||
char *value = (char*)mem_a(128);
|
||||
ftepp_predef_randval = rand() % 0xFFFF; /* short int */
|
||||
sprintf(value, "%d", ftepp_predef_randval);
|
||||
ftepp_predef_randval = (util_rand() % 0xFF) + 1;
|
||||
sprintf(value, "%u", ftepp_predef_randval);
|
||||
|
||||
(void)context;
|
||||
return value;
|
||||
|
@ -124,7 +124,7 @@ char *ftepp_predef_random(lex_file *context) {
|
|||
/* __RANDOM_LAST__ */
|
||||
char *ftepp_predef_randomlast(lex_file *context) {
|
||||
char *value = (char*)mem_a(128);
|
||||
sprintf(value, "%d", ftepp_predef_randval);
|
||||
sprintf(value, "%u", ftepp_predef_randval);
|
||||
|
||||
(void)context;
|
||||
return value;
|
||||
|
|
3
gmqcc.h
3
gmqcc.h
|
@ -260,6 +260,9 @@ size_t util_strtononcmd (const char *, char *, size_t);
|
|||
|
||||
uint16_t util_crc16(uint16_t crc, const char *data, size_t len);
|
||||
|
||||
void util_seed(uint32_t);
|
||||
uint32_t util_rand();
|
||||
|
||||
#ifdef NOTRACK
|
||||
# define mem_a(x) malloc (x)
|
||||
# define mem_d(x) free ((void*)x)
|
||||
|
|
3
main.c
3
main.c
|
@ -23,6 +23,7 @@
|
|||
*/
|
||||
#include "gmqcc.h"
|
||||
#include "lexer.h"
|
||||
#include <time.h>
|
||||
|
||||
/* TODO: cleanup this whole file .. it's a fuckign mess */
|
||||
|
||||
|
@ -505,6 +506,8 @@ int main(int argc, char **argv) {
|
|||
con_init ();
|
||||
opts_init("progs.dat", COMPILER_GMQCC, (1024 << 3));
|
||||
|
||||
util_seed(time(0));
|
||||
|
||||
if (!options_parse(argc, argv)) {
|
||||
return usage();
|
||||
}
|
||||
|
|
171
util.c
171
util.c
|
@ -538,3 +538,174 @@ void util_htdel(hash_table_t *ht) {
|
|||
mem_d(ht->table);
|
||||
mem_d(ht);
|
||||
}
|
||||
|
||||
/*
|
||||
* Implementation of the Mersenne twister PRNG (pseudo random numer
|
||||
* generator). Implementation of MT19937. Has a period of 2^19937-1
|
||||
* which is a Mersenne Prime (hence the name).
|
||||
*
|
||||
* Implemented from specification and original paper:
|
||||
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
|
||||
*
|
||||
* This code is placed in the public domain by me personally
|
||||
* (Dale Weiler, a.k.a graphitemaster).
|
||||
*/
|
||||
|
||||
#define MT_SIZE 624
|
||||
#define MT_PERIOD 397
|
||||
#define MT_SPACE (MT_SIZE - MT_PERIOD)
|
||||
|
||||
static uint32_t mt_state[MT_SIZE];
|
||||
static size_t mt_index = 0;
|
||||
|
||||
static GMQCC_INLINE void mt_generate() {
|
||||
/*
|
||||
* The loop has been unrolled here: the original paper and implemenation
|
||||
* Called for the following code:
|
||||
* for (register unsigned i = 0; i < MT_SIZE; ++i) {
|
||||
* register uint32_t load;
|
||||
* load = (0x80000000 & mt_state[i]) // most significant 32nd bit
|
||||
* load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit
|
||||
*
|
||||
* mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1);
|
||||
*
|
||||
* if (load & 1) mt_state[i] ^= 0x9908B0DF;
|
||||
* }
|
||||
*
|
||||
* This essentially is a waste: we have two modulus operations, and
|
||||
* a branch that is executed every iteration from [0, MT_SIZE).
|
||||
*
|
||||
* Please see: http://www.quadibloc.com/crypto/co4814.htm for more
|
||||
* information on how this clever trick works.
|
||||
*/
|
||||
static const uint32_t matrix[2] = {
|
||||
0x00000000,
|
||||
0x9908B0Df
|
||||
};
|
||||
/*
|
||||
* This register gives up a little more speed by instructing the compiler
|
||||
* to force these into CPU registers (they're counters for indexing mt_state
|
||||
* which we can force the compiler to generate prefetch instructions for)
|
||||
*/
|
||||
register uint32_t y;
|
||||
register uint32_t i;
|
||||
|
||||
/*
|
||||
* Said loop has been unrolled for MT_SPACE (226 iterations), opposed
|
||||
* to [0, MT_SIZE) (634 iterations).
|
||||
*/
|
||||
for (i = 0; i < MT_SPACE; ++i) {
|
||||
y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
|
||||
|
||||
i ++; /* loop unroll */
|
||||
|
||||
y = (0x800000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1];
|
||||
}
|
||||
|
||||
/*
|
||||
* collapsing the walls unrolled (evenly dividing 396 [632-227 = 396
|
||||
* = 2*2*3*3*11])
|
||||
*/
|
||||
i = MT_SPACE;
|
||||
while (i < MT_SIZE - 1) {
|
||||
/*
|
||||
* We expand this 11 times .. manually, no macros are required
|
||||
* here. This all fits in the CPU cache.
|
||||
*/
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]);
|
||||
mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1];
|
||||
++i;
|
||||
}
|
||||
|
||||
/* i = mt_state[623] */
|
||||
y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]);
|
||||
mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1];
|
||||
}
|
||||
|
||||
void util_seed(uint32_t value) {
|
||||
/*
|
||||
* We seed the mt_state with a LCG (linear congruential generator)
|
||||
* We're operating exactly on exactly m=32, so there is no need to
|
||||
* use modulus.
|
||||
*
|
||||
* The multipler of choice is 0x6C07865, also knows as the Borosh-
|
||||
* Niederreiter multipler used for modulus 2^32. More can be read
|
||||
* about this in Knuth's TAOCP Volume 2, page 106.
|
||||
*
|
||||
* If you don't own TAOCP something is wrong with you :-) .. so I
|
||||
* also provided a link to the original paper by Borosh and
|
||||
* Niederreiter. It's called "Optional Multipliers for PRNG by The
|
||||
* Linear Congruential Method" (1983).
|
||||
* http://en.wikipedia.org/wiki/Linear_congruential_generator
|
||||
*
|
||||
* From said page, it says the following:
|
||||
* "A common Mersenne twister implementation, interestingly enough
|
||||
* used an LCG to generate seed data."
|
||||
*
|
||||
* Remarks:
|
||||
* The data we're operating on is 32-bits for the mt_state array, so
|
||||
* there is no masking required with 0xFFFFFFFF
|
||||
*/
|
||||
register size_t i;
|
||||
|
||||
mt_state[0] = value;
|
||||
for (i = 1; i < MT_SIZE; ++i)
|
||||
mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i;
|
||||
}
|
||||
|
||||
uint32_t util_rand() {
|
||||
register uint32_t y;
|
||||
|
||||
/*
|
||||
* This is inlined with any sane compiler (I checked)
|
||||
* for some reason though, SubC seems to be generating invalid
|
||||
* code when it inlines this.
|
||||
*/
|
||||
if (!mt_index)
|
||||
mt_generate();
|
||||
|
||||
y = mt_state[mt_index];
|
||||
|
||||
/* Standard tempering */
|
||||
y ^= y >> 11; /* +7 */
|
||||
y ^= y << 7 & 0x9D2C5680; /* +4 */
|
||||
y ^= y << 15 & 0xEFC60000; /* -4 */
|
||||
y ^= y >> 18; /* -7 */
|
||||
|
||||
if(++mt_index == MT_SIZE)
|
||||
mt_index = 0;
|
||||
|
||||
return y;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue