mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-24 12:51:04 +00:00
Merge branch 'screwaround'
This commit is contained in:
commit
72f056a4d7
5 changed files with 406 additions and 154 deletions
46
Makefile
46
Makefile
|
@ -9,7 +9,7 @@ CYGWIN = $(findstring CYGWIN, $(UNAME))
|
|||
MINGW = $(findstring MINGW32, $(UNAME))
|
||||
|
||||
CC ?= clang
|
||||
CFLAGS += -Wall -Wextra -I. -fno-strict-aliasing -fsigned-char
|
||||
CFLAGS += -Wall -Wextra -I. -fno-strict-aliasing -fsigned-char -O2
|
||||
CFLAGS += -DGMQCC_GITINFO="`git describe`"
|
||||
#turn on tons of warnings if clang is present
|
||||
# but also turn off the STUPID ONES
|
||||
|
@ -101,14 +101,15 @@ check: all
|
|||
clean:
|
||||
rm -f *.o $(GMQCC) $(QCVM) $(TESTSUITE) *.dat
|
||||
|
||||
# deps
|
||||
$(OBJ_D) $(OBJ_C) $(OBJ_X): gmqcc.h opts.def
|
||||
main.o: lexer.h
|
||||
parser.o: ast.h lexer.h
|
||||
ftepp.o: lexer.h
|
||||
lexer.o: lexer.h
|
||||
ast.o: ast.h ir.h
|
||||
ir.o: ir.h
|
||||
depend:
|
||||
makedepend -Y -w 65536 \
|
||||
$(subst .o,.c,$(OBJ_D))
|
||||
makedepend -a -Y -w 65536 \
|
||||
$(subst .o,.c,$(OBJ_T))
|
||||
makedepend -a -Y -w 65536 \
|
||||
$(subst .o,.c,$(OBJ_C))
|
||||
makedepend -a -Y -w 65536 \
|
||||
$(subst .o,.c,$(OBJ_X))
|
||||
|
||||
#install rules
|
||||
install: install-gmqcc install-qcvm install-doc
|
||||
|
@ -122,3 +123,30 @@ install-doc:
|
|||
install -d -m755 $(DESTDIR)$(MANDIR)/man1
|
||||
install -m755 doc/gmqcc.1 $(DESTDIR)$(MANDIR)/man1/
|
||||
install -m755 doc/qcvm.1 $(DESTDIR)$(MANDIR)/man1/
|
||||
|
||||
# DO NOT DELETE
|
||||
|
||||
util.o: gmqcc.h opts.def
|
||||
code.o: gmqcc.h opts.def
|
||||
ast.o: gmqcc.h opts.def ast.h ir.h
|
||||
ir.o: gmqcc.h opts.def ir.h
|
||||
conout.o: gmqcc.h opts.def
|
||||
ftepp.o: gmqcc.h opts.def lexer.h
|
||||
opts.o: gmqcc.h opts.def
|
||||
file.o: gmqcc.h opts.def
|
||||
utf8.o: gmqcc.h opts.def
|
||||
correct.o: gmqcc.h opts.def
|
||||
|
||||
test.o: gmqcc.h opts.def
|
||||
util.o: gmqcc.h opts.def
|
||||
conout.o: gmqcc.h opts.def
|
||||
file.o: gmqcc.h opts.def
|
||||
|
||||
main.o: gmqcc.h opts.def lexer.h
|
||||
lexer.o: gmqcc.h opts.def lexer.h
|
||||
parser.o: gmqcc.h opts.def lexer.h ast.h ir.h
|
||||
file.o: gmqcc.h opts.def
|
||||
|
||||
util.o: gmqcc.h opts.def
|
||||
conout.o: gmqcc.h opts.def
|
||||
file.o: gmqcc.h opts.def
|
||||
|
|
485
correct.c
485
correct.c
|
@ -1,6 +1,7 @@
|
|||
/*
|
||||
* Copyright (C) 2012, 2013
|
||||
* Dale Weiler
|
||||
* Wolfgang Bumiller
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
* this software and associated documentation files (the "Software"), to deal in
|
||||
|
@ -38,13 +39,25 @@
|
|||
* There is actually no way to know for sure that certian identifers
|
||||
* such as "lates", need to be corrected to "late" or "latest" or any
|
||||
* other permutations that look lexically the same. This is why we
|
||||
* must advocate the usage of probabilities. This implies that we're
|
||||
* trying to find the correction for C, out of all possible corrections
|
||||
* that maximizes the probability of C for the original identifer I.
|
||||
* must advocate the usage of probabilities. This means that instead of
|
||||
* just guessing, instead we're trying to find the correction for C,
|
||||
* out of all possible corrections that maximizes the probability of C
|
||||
* for the original identifer I.
|
||||
*
|
||||
* Bayes' Therom suggests something of the following:
|
||||
* Thankfully there exists some theroies for probalistic interpretations
|
||||
* of data. Since we're operating on two distictive intepretations, the
|
||||
* transposition from I to C. We need something that can express how much
|
||||
* degree of I should rationally change to become C. this is called the
|
||||
* Bayesian interpretation. You can read more about it from here:
|
||||
* http://www.celiagreen.com/charlesmccreery/statistics/bayestutorial.pdf
|
||||
* (which is probably the only good online documentation for bayes theroy
|
||||
* no lie. Everything else just sucks ..)
|
||||
*
|
||||
* Bayes' Thereom suggests something like the following:
|
||||
* AC P(I|C) P(C) / P(I)
|
||||
* Since P(I) is the same for every possibly I, we can ignore it giving
|
||||
*
|
||||
* However since P(I) is the same for every possibility of I, we can
|
||||
* completley ignore it giving just:
|
||||
* AC P(I|C) P(C)
|
||||
*
|
||||
* This greatly helps visualize how the parts of the expression are performed
|
||||
|
@ -56,12 +69,9 @@
|
|||
* 2: P(I|C), the probability that I would be used, when the programmer
|
||||
* really meant C. This is the error model.
|
||||
*
|
||||
* 3: AC, the control mechanisim, which implies the enumeration of all
|
||||
* feasible values of C, and then determine the one that gives the
|
||||
* greatest probability score. Selecting it as the "correction"
|
||||
*
|
||||
*
|
||||
* The requirement for complex expression involving two models:
|
||||
* 3: AC, the control mechanisim, an enumerator if you will, one that
|
||||
* enumerates all feasible values of C, to determine the one that
|
||||
* gives the greatest probability score.
|
||||
*
|
||||
* In reality the requirement for a more complex expression involving
|
||||
* two seperate models is considerably a waste. But one must recognize
|
||||
|
@ -70,29 +80,230 @@
|
|||
* estimate P(C|I) you have to consider both the probability of C and
|
||||
* probability of the transposition from C to I. It's simply much more
|
||||
* cleaner, and direct to seperate the two factors.
|
||||
*
|
||||
* Research tells us that 80% to 95% of all spelling errors have an edit
|
||||
* distance no greater than one. Knowing this we can optimize for most
|
||||
* cases of mistakes without taking a performance hit. Which is what we
|
||||
* base longer edit distances off of. Opposed to the original method of
|
||||
* I had concieved of checking everything.
|
||||
*
|
||||
* A little information on additional algorithms used:
|
||||
*
|
||||
* Initially when I implemented this corrector, it was very slow.
|
||||
* Need I remind you this is essentially a brute force attack on strings,
|
||||
* and since every transformation requires dynamic memory allocations,
|
||||
* you can easily imagine where most of the runtime conflated. Yes
|
||||
* It went right to malloc. More than THREE MILLION malloc calls are
|
||||
* performed for an identifier about 16 bytes long. This was such a
|
||||
* shock to me. A forward allocator (or as some call it a bump-point
|
||||
* allocator, or just a memory pool) was implemented. To combat this.
|
||||
*
|
||||
* But of course even other factors were making it slow. Initially
|
||||
* this used a hashtable. And hashtables have a good constant lookup
|
||||
* time complexity. But the problem wasn't in the hashtable, it was
|
||||
* in the hashing (despite having one of the fastest hash functions
|
||||
* known). Remember those 3 million mallocs? Well for every malloc
|
||||
* there is also a hash. After 3 million hashes .. you start to get
|
||||
* very slow. To combat this I had suggested burst tries to Blub.
|
||||
* The next day he had implemented them. Sure enough this brought
|
||||
* down the runtime by a factor > 100%
|
||||
*
|
||||
* The trie initially was designed to work on all strings, but later it
|
||||
* became aparent that not only was this not a requirement. It was also
|
||||
* slowing down get/sets' for the trie. To fully understand, only
|
||||
* correct_alpha needs to be understood by the trie system, knowing this
|
||||
* We can combat the slowness using a very clever but evil optimization.
|
||||
* By Setting a fixed sized amount of branches for the trie using a
|
||||
* char-to-index map into the branches. We've complelty made the trie
|
||||
* accesses entierly constant in lookup time. No really, a lookup is
|
||||
* literally trie[str[0]] [str[1]] [2] .... .value.
|
||||
*
|
||||
*
|
||||
* Future Work (If we really need it)
|
||||
*
|
||||
* Currently we can only distinguish one source of error in the
|
||||
* language model we use. This could become an issue for identifiers
|
||||
* that have close colliding rates, e.g colate->coat yields collate.
|
||||
*
|
||||
* Currently the error model has been fairly trivial, the smaller the
|
||||
* edit distance the smaller the error. This usually causes some un-
|
||||
* expected problems. e.g reciet->recite yields recipt. For QuakeC
|
||||
* this could become a problem when lots of identifiers are involved.
|
||||
*
|
||||
* Our control mechanisim could use a limit, i.e limit the number of
|
||||
* sets of edits for distance X. This would also increase execution
|
||||
* speed considerably.
|
||||
*/
|
||||
|
||||
/* some hashtable management for dictonaries */
|
||||
static size_t *correct_find(ht table, const char *word) {
|
||||
return (size_t*)util_htget(table, word);
|
||||
|
||||
#define CORRECT_POOL_SIZE (128*1024*1024)
|
||||
/*
|
||||
* A forward allcator for the corrector. This corrector requires a lot
|
||||
* of allocations. This forward allocator combats all those allocations
|
||||
* and speeds us up a little. It also saves us space in a way since each
|
||||
* allocation isn't wasting a little header space for when NOTRACK isn't
|
||||
* defined.
|
||||
*/
|
||||
static unsigned char **correct_pool_data = NULL;
|
||||
static unsigned char *correct_pool_this = NULL;
|
||||
static size_t correct_pool_addr = 0;
|
||||
|
||||
static GMQCC_INLINE void correct_pool_new(void) {
|
||||
correct_pool_addr = 0;
|
||||
correct_pool_this = (unsigned char *)mem_a(CORRECT_POOL_SIZE);
|
||||
|
||||
vec_push(correct_pool_data, correct_pool_this);
|
||||
}
|
||||
|
||||
static int correct_update(ht *table, const char *word) {
|
||||
size_t *data = correct_find(*table, word);
|
||||
if (!data)
|
||||
return 0;
|
||||
static GMQCC_INLINE void *correct_pool_alloc(size_t bytes) {
|
||||
void *data;
|
||||
if (correct_pool_addr + bytes>= CORRECT_POOL_SIZE)
|
||||
correct_pool_new();
|
||||
|
||||
(*data)++;
|
||||
return 1;
|
||||
data = (void*)correct_pool_this;
|
||||
correct_pool_this += bytes;
|
||||
correct_pool_addr += bytes;
|
||||
return data;
|
||||
}
|
||||
|
||||
static GMQCC_INLINE void correct_pool_delete(void) {
|
||||
size_t i;
|
||||
for (i = 0; i < vec_size(correct_pool_data); ++i)
|
||||
mem_d(correct_pool_data[i]);
|
||||
|
||||
correct_pool_data = NULL;
|
||||
correct_pool_this = NULL;
|
||||
correct_pool_addr = 0;
|
||||
}
|
||||
|
||||
|
||||
static GMQCC_INLINE char *correct_pool_claim(const char *data) {
|
||||
char *claim = util_strdup(data);
|
||||
correct_pool_delete();
|
||||
return claim;
|
||||
}
|
||||
|
||||
/*
|
||||
* _ is valid in identifiers. I've yet to implement numerics however
|
||||
* because they're only valid after the first character is of a _, or
|
||||
* alpha character.
|
||||
*/
|
||||
static const char correct_alpha[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_";
|
||||
static const char correct_alpha[] = "abcdefghijklmnopqrstuvwxyz"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"_"; /* TODO: Numbers ... */
|
||||
|
||||
static const size_t correct_alpha_index[0x80] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 52,
|
||||
0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
||||
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
/*
|
||||
* A fast space efficent trie for a dictionary of identifiers. This is
|
||||
* faster than a hashtable for one reason. A hashtable itself may have
|
||||
* fast constant lookup time, but the hash itself must be very fast. We
|
||||
* have one of the fastest hash functions for strings, but if you do a
|
||||
* lost of hashing (which we do, almost 3 million hashes per identifier)
|
||||
* a hashtable becomes slow.
|
||||
*/
|
||||
correct_trie_t* correct_trie_new() {
|
||||
correct_trie_t *t = (correct_trie_t*)mem_a(sizeof(correct_trie_t));
|
||||
t->value = NULL;
|
||||
t->entries = NULL;
|
||||
return t;
|
||||
}
|
||||
|
||||
void correct_trie_del_sub(correct_trie_t *t) {
|
||||
size_t i;
|
||||
if (!t->entries)
|
||||
return;
|
||||
for (i = 0; i < sizeof(correct_alpha)-1; ++i) {
|
||||
correct_trie_del_sub(&t->entries[i]);
|
||||
}
|
||||
mem_d(t->entries);
|
||||
}
|
||||
|
||||
void correct_trie_del(correct_trie_t *t) {
|
||||
size_t i;
|
||||
if (t->entries) {
|
||||
for (i = 0; i < sizeof(correct_alpha)-1; ++i)
|
||||
correct_trie_del_sub(&t->entries[i]);
|
||||
mem_d(t->entries);
|
||||
}
|
||||
mem_d(t);
|
||||
}
|
||||
|
||||
void* correct_trie_get(const correct_trie_t *t, const char *key) {
|
||||
const unsigned char *data = (const unsigned char*)key;
|
||||
|
||||
while (*data) {
|
||||
if (!t->entries)
|
||||
return NULL;
|
||||
t = t->entries + correct_alpha_index[*data];
|
||||
++data;
|
||||
}
|
||||
return t->value;
|
||||
}
|
||||
|
||||
void correct_trie_set(correct_trie_t *t, const char *key, void * const value) {
|
||||
const unsigned char *data = (const unsigned char*)key;
|
||||
while (*data) {
|
||||
if (!t->entries) {
|
||||
t->entries = (correct_trie_t*)mem_a(sizeof(correct_trie_t)*(sizeof(correct_alpha)-1));
|
||||
memset(t->entries, 0, sizeof(correct_trie_t)*(sizeof(correct_alpha)-1));
|
||||
}
|
||||
t = t->entries + correct_alpha_index[*data];
|
||||
++data;
|
||||
}
|
||||
t->value = value;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Implementation of the corrector algorithm commences. A very efficent
|
||||
* brute-force attack (thanks to tries and mempool :-)).
|
||||
*/
|
||||
static GMQCC_INLINE size_t *correct_find(correct_trie_t *table, const char *word) {
|
||||
return (size_t*)correct_trie_get(table, word);
|
||||
}
|
||||
|
||||
static GMQCC_INLINE bool correct_update(correct_trie_t* *table, const char *word) {
|
||||
size_t *data = correct_find(*table, word);
|
||||
if (!data)
|
||||
return false;
|
||||
|
||||
(*data)++;
|
||||
return true;
|
||||
}
|
||||
|
||||
void correct_add(correct_trie_t* table, size_t ***size, const char *ident) {
|
||||
size_t *data = NULL;
|
||||
const char *add = ident;
|
||||
|
||||
if (!correct_update(&table, add)) {
|
||||
data = (size_t*)mem_a(sizeof(size_t));
|
||||
*data = 1;
|
||||
|
||||
vec_push((*size), data);
|
||||
correct_trie_set(table, add, data);
|
||||
}
|
||||
}
|
||||
|
||||
void correct_del(correct_trie_t* dictonary, size_t **data) {
|
||||
size_t i;
|
||||
const size_t vs = vec_size(data);
|
||||
|
||||
for (i = 0; i < vs; i++)
|
||||
mem_d(data[i]);
|
||||
|
||||
vec_free(data);
|
||||
correct_trie_del(dictonary);
|
||||
}
|
||||
|
||||
/*
|
||||
* correcting logic for the following forms of transformations:
|
||||
|
@ -100,73 +311,81 @@ static const char correct_alpha[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQ
|
|||
* 2) transposition
|
||||
* 3) alteration
|
||||
* 4) insertion
|
||||
*
|
||||
* These functions could take an additional size_t **size paramater
|
||||
* and store back the results of their new length in an array that
|
||||
* is the same as **array for the memcmp in correct_exists. I'm just
|
||||
* not able to figure out how to do that just yet. As my brain is
|
||||
* not in the mood to figure out that logic. This is a reminder to
|
||||
* do it, or for someone else to :-) correct_edit however would also
|
||||
* need to take a size_t ** to carry it along (would all the argument
|
||||
* overhead be worth it?)
|
||||
*/
|
||||
static size_t correct_deletion(const char *ident, char **array, size_t index) {
|
||||
size_t itr;
|
||||
size_t len = strlen(ident);
|
||||
static size_t correct_deletion(const char *ident, char **array) {
|
||||
size_t itr = 0;
|
||||
const size_t len = strlen(ident);
|
||||
|
||||
for (itr = 0; itr < len; itr++) {
|
||||
char *a = (char*)mem_a(len+1);
|
||||
for (; itr < len; itr++) {
|
||||
char *a = (char*)correct_pool_alloc(len+1);
|
||||
memcpy(a, ident, itr);
|
||||
memcpy(a + itr, ident + itr + 1, len - itr);
|
||||
array[index + itr] = a;
|
||||
array[itr] = a;
|
||||
}
|
||||
|
||||
return itr;
|
||||
}
|
||||
|
||||
static size_t correct_transposition(const char *ident, char **array, size_t index) {
|
||||
size_t itr;
|
||||
size_t len = strlen(ident);
|
||||
static size_t correct_transposition(const char *ident, char **array) {
|
||||
size_t itr = 0;
|
||||
const size_t len = strlen(ident);
|
||||
|
||||
for (itr = 0; itr < len - 1; itr++) {
|
||||
for (; itr < len - 1; itr++) {
|
||||
char tmp;
|
||||
char *a = (char*)mem_a(len+1);
|
||||
char *a = (char*)correct_pool_alloc(len+1);
|
||||
memcpy(a, ident, len+1);
|
||||
tmp = a[itr];
|
||||
a[itr ] = a[itr+1];
|
||||
a[itr+1] = tmp;
|
||||
array[index + itr] = a;
|
||||
array[itr] = a;
|
||||
}
|
||||
|
||||
return itr;
|
||||
}
|
||||
|
||||
static size_t correct_alteration(const char *ident, char **array, size_t index) {
|
||||
size_t itr;
|
||||
size_t jtr;
|
||||
size_t ktr;
|
||||
size_t len = strlen(ident);
|
||||
static size_t correct_alteration(const char *ident, char **array) {
|
||||
size_t itr = 0;
|
||||
size_t jtr = 0;
|
||||
size_t ktr = 0;
|
||||
const size_t len = strlen(ident);
|
||||
|
||||
for (itr = 0, ktr = 0; itr < len; itr++) {
|
||||
for (; itr < len; itr++) {
|
||||
for (jtr = 0; jtr < sizeof(correct_alpha)-1; jtr++, ktr++) {
|
||||
char *a = (char*)mem_a(len+1);
|
||||
char *a = (char*)correct_pool_alloc(len+1);
|
||||
memcpy(a, ident, len+1);
|
||||
a[itr] = correct_alpha[jtr];
|
||||
array[index + ktr] = a;
|
||||
array[ktr] = a;
|
||||
}
|
||||
}
|
||||
|
||||
return ktr;
|
||||
}
|
||||
|
||||
static size_t correct_insertion(const char *ident, char **array, size_t index) {
|
||||
size_t itr;
|
||||
size_t jtr;
|
||||
size_t ktr;
|
||||
size_t len = strlen(ident);
|
||||
static size_t correct_insertion(const char *ident, char **array) {
|
||||
size_t itr = 0;
|
||||
size_t jtr = 0;
|
||||
const size_t len = strlen(ident);
|
||||
|
||||
for (itr = 0, ktr = 0; itr <= len; itr++) {
|
||||
for (jtr = 0; jtr < sizeof(correct_alpha)-1; jtr++, ktr++) {
|
||||
char *a = (char*)mem_a(len+2);
|
||||
for (; itr <= len; itr++) {
|
||||
for (jtr = 0; jtr < sizeof(correct_alpha)-1; jtr++) {
|
||||
char *a = (char*)correct_pool_alloc(len+2);
|
||||
memcpy(a, ident, itr);
|
||||
a[itr] = correct_alpha[jtr];
|
||||
memcpy(a + itr + 1, ident + itr, len - itr + 1);
|
||||
array[index + ktr] = a;
|
||||
a[itr] = correct_alpha[jtr];
|
||||
array[itr * (sizeof(correct_alpha)-1) + jtr] = a;
|
||||
}
|
||||
}
|
||||
|
||||
return ktr;
|
||||
return (len+1)*(sizeof(correct_alpha)-1);
|
||||
}
|
||||
|
||||
static GMQCC_INLINE size_t correct_size(const char *ident) {
|
||||
|
@ -183,15 +402,15 @@ static GMQCC_INLINE size_t correct_size(const char *ident) {
|
|||
|
||||
static char **correct_edit(const char *ident) {
|
||||
size_t next;
|
||||
char **find = (char**)mem_a(correct_size(ident) * sizeof(char*));
|
||||
char **find = (char**)correct_pool_alloc(correct_size(ident) * sizeof(char*));
|
||||
|
||||
if (!find)
|
||||
return NULL;
|
||||
|
||||
next = correct_deletion (ident, find, 0);
|
||||
next += correct_transposition(ident, find, next);
|
||||
next += correct_alteration (ident, find, next);
|
||||
/*****/ correct_insertion (ident, find, next);
|
||||
next = correct_deletion (ident, find);
|
||||
next += correct_transposition(ident, find+next);
|
||||
next += correct_alteration (ident, find+next);
|
||||
/*****/ correct_insertion (ident, find+next);
|
||||
|
||||
return find;
|
||||
}
|
||||
|
@ -203,48 +422,86 @@ static char **correct_edit(const char *ident) {
|
|||
*/
|
||||
static int correct_exist(char **array, size_t rows, char *ident) {
|
||||
size_t itr;
|
||||
for (itr = 0; itr < rows; itr++)
|
||||
if (!strcmp(array[itr], ident))
|
||||
/*
|
||||
* As an experiment I tried the following assembly for memcmp here:
|
||||
*
|
||||
* correct_cmp_loop:
|
||||
* incl %eax ; eax = LHS
|
||||
* incl %edx ; edx = LRS
|
||||
* cmpl %eax, %ebx ; ebx = &LHS[END_POS]
|
||||
*
|
||||
* jbe correct_cmp_eq
|
||||
* movb (%edx), %cl ; micro-optimized even on atoms :-)
|
||||
* cmpb %cl, (%eax) ; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
* jg correct_cmp_gt
|
||||
* jge correct_cmp_loop
|
||||
* ...
|
||||
*
|
||||
* Despite how much optimization went in to this, the speed was
|
||||
* being conflicted by the strlen(ident) used for &LHS[END_POS]
|
||||
* If we could eliminate the strlen with what I suggested on line
|
||||
* 311 ... we can accelerate this whole damn thing quite a bit.
|
||||
*
|
||||
* However there is still something we can do here that does give
|
||||
* us a little more speed. Although one more branch, we know for
|
||||
* sure there is at least one byte to compare, if that one byte
|
||||
* simply isn't the same we can skip the full check. Which means
|
||||
* we skip a whole strlen call.
|
||||
*/
|
||||
for (itr = 0; itr < rows; itr++) {
|
||||
if (!memcmp(array[itr], ident, strlen(ident)))
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static char **correct_known(ht table, char **array, size_t rows, size_t *next) {
|
||||
size_t itr;
|
||||
size_t jtr;
|
||||
size_t len;
|
||||
size_t row;
|
||||
char **res = NULL;
|
||||
char **end;
|
||||
static GMQCC_INLINE char **correct_known_resize(char **res, size_t *allocated, size_t size) {
|
||||
size_t oldallocated = *allocated;
|
||||
char **out;
|
||||
if (size < oldallocated)
|
||||
return res;
|
||||
|
||||
for (itr = 0, len = 0; itr < rows; itr++) {
|
||||
out = correct_pool_alloc(sizeof(*res) * oldallocated + 32);
|
||||
memcpy(out, res, sizeof(*res) * oldallocated);
|
||||
|
||||
*allocated += 32;
|
||||
return out;
|
||||
}
|
||||
|
||||
static char **correct_known(correct_trie_t* table, char **array, size_t rows, size_t *next) {
|
||||
size_t itr = 0;
|
||||
size_t jtr = 0;
|
||||
size_t len = 0;
|
||||
size_t row = 0;
|
||||
size_t nxt = 8;
|
||||
char **res = correct_pool_alloc(sizeof(char *) * nxt);
|
||||
char **end = NULL;
|
||||
|
||||
for (; itr < rows; itr++) {
|
||||
end = correct_edit(array[itr]);
|
||||
row = correct_size(array[itr]);
|
||||
|
||||
/* removing jtr=0 here speeds it up by 100ms O_o */
|
||||
for (jtr = 0; jtr < row; jtr++) {
|
||||
if (correct_find(table, end[jtr]) && !correct_exist(res, len, end[jtr])) {
|
||||
res = mem_r(res, sizeof(char*) * (len + 1));
|
||||
res = correct_known_resize(res, &nxt, len+1);
|
||||
res[len++] = end[jtr];
|
||||
} else {
|
||||
mem_d(end[jtr]);
|
||||
}
|
||||
}
|
||||
|
||||
mem_d(end);
|
||||
}
|
||||
|
||||
*next = len;
|
||||
return res;
|
||||
}
|
||||
|
||||
static char *correct_maximum(ht table, char **array, size_t rows) {
|
||||
char *str = NULL;
|
||||
size_t *itm = NULL;
|
||||
size_t itr;
|
||||
size_t top;
|
||||
static char *correct_maximum(correct_trie_t* table, char **array, size_t rows) {
|
||||
char *str = NULL;
|
||||
size_t *itm = NULL;
|
||||
size_t itr = 0;
|
||||
size_t top = 0;
|
||||
|
||||
for (itr = 0, top = 0; itr < rows; itr++) {
|
||||
for (; itr < rows; itr++) {
|
||||
if ((itm = correct_find(table, array[itr])) && (*itm > top)) {
|
||||
top = *itm;
|
||||
str = array[itr];
|
||||
|
@ -254,77 +511,37 @@ static char *correct_maximum(ht table, char **array, size_t rows) {
|
|||
return str;
|
||||
}
|
||||
|
||||
static void correct_cleanup(char **array, size_t rows) {
|
||||
size_t itr;
|
||||
for (itr = 0; itr < rows; itr++)
|
||||
mem_d(array[itr]);
|
||||
|
||||
mem_d(array);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the exposed interface:
|
||||
* takes a table for the dictonary a vector of sizes (used for internal
|
||||
* probability calculation, and an identifier to "correct"
|
||||
*
|
||||
* the add function works the same. Except the identifier is used to
|
||||
* add to the dictonary.
|
||||
* probability calculation), and an identifier to "correct".
|
||||
*/
|
||||
void correct_add(ht table, size_t ***size, const char *ident) {
|
||||
size_t *data = NULL;
|
||||
const char *add = ident;
|
||||
char *correct_str(correct_trie_t* table, const char *ident) {
|
||||
char **e1 = NULL;
|
||||
char **e2 = NULL;
|
||||
char *e1ident = NULL;
|
||||
char *e2ident = NULL;
|
||||
size_t e1rows = 0;
|
||||
size_t e2rows = 0;
|
||||
|
||||
if (!correct_update(&table, add)) {
|
||||
data = (size_t*)mem_a(sizeof(size_t));
|
||||
*data = 1;
|
||||
|
||||
vec_push((*size), data);
|
||||
util_htset(table, add, data);
|
||||
}
|
||||
}
|
||||
|
||||
char *correct_str(ht table, const char *ident) {
|
||||
char **e1;
|
||||
char **e2;
|
||||
char *e1ident;
|
||||
char *e2ident;
|
||||
char *found = util_strdup(ident);
|
||||
|
||||
size_t e1rows = 0;
|
||||
size_t e2rows = 0;
|
||||
correct_pool_new();
|
||||
|
||||
/* needs to be allocated for free later */
|
||||
if (correct_find(table, ident))
|
||||
return found;
|
||||
return correct_pool_claim(ident);
|
||||
|
||||
if ((e1rows = correct_size(ident))) {
|
||||
e1 = correct_edit(ident);
|
||||
|
||||
if ((e1ident = correct_maximum(table, e1, e1rows))) {
|
||||
mem_d(found);
|
||||
found = util_strdup(e1ident);
|
||||
correct_cleanup(e1, e1rows);
|
||||
return found;
|
||||
}
|
||||
if ((e1ident = correct_maximum(table, e1, e1rows)))
|
||||
return correct_pool_claim(e1ident);
|
||||
}
|
||||
|
||||
e2 = correct_known(table, e1, e1rows, &e2rows);
|
||||
if (e2rows && ((e2ident = correct_maximum(table, e2, e2rows)))) {
|
||||
mem_d(found);
|
||||
found = util_strdup(e2ident);
|
||||
}
|
||||
if (e2rows && ((e2ident = correct_maximum(table, e2, e2rows))))
|
||||
return correct_pool_claim(e2ident);
|
||||
|
||||
correct_cleanup(e1, e1rows);
|
||||
correct_cleanup(e2, e2rows);
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
void correct_del(ht dictonary, size_t **data) {
|
||||
size_t i;
|
||||
for (i = 0; i < vec_size(data); i++)
|
||||
mem_d(data[i]);
|
||||
|
||||
vec_free(data);
|
||||
util_htdel(dictonary);
|
||||
correct_pool_delete();
|
||||
return util_strdup(ident);
|
||||
}
|
||||
|
|
13
gmqcc.h
13
gmqcc.h
|
@ -315,6 +315,13 @@ void _util_vec_grow(void **a, size_t i, size_t s);
|
|||
#define vec_upload(X,Y,S) memcpy(vec_add((X), (S) * sizeof(*(Y))), (Y), (S) * sizeof(*(Y)))
|
||||
#define vec_remove(A,I,N) memmove((A)+(I),(A)+((I)+(N)),sizeof(*(A))*(vec_meta(A)->used-(I)-(N))),vec_meta(A)->used-=(N)
|
||||
|
||||
typedef struct trie_s {
|
||||
void *value;
|
||||
struct trie_s *entries;
|
||||
} correct_trie_t;
|
||||
|
||||
correct_trie_t* correct_trie_new();
|
||||
|
||||
typedef struct hash_table_t {
|
||||
size_t size;
|
||||
struct hash_node_t **table;
|
||||
|
@ -426,9 +433,9 @@ GMQCC_INLINE FILE *file_open (const char *, const char *);
|
|||
/*===================================================================*/
|
||||
/*=========================== correct.c =============================*/
|
||||
/*===================================================================*/
|
||||
void correct_del(ht, size_t **);
|
||||
void correct_add(ht, size_t ***, const char *);
|
||||
char *correct_str(ht, /********/ const char *);
|
||||
void correct_del(correct_trie_t*, size_t **);
|
||||
void correct_add(correct_trie_t*, size_t ***, const char *);
|
||||
char *correct_str(correct_trie_t*, /********/ const char *);
|
||||
|
||||
/*===================================================================*/
|
||||
/*=========================== code.c ================================*/
|
||||
|
|
6
parser.c
6
parser.c
|
@ -75,8 +75,8 @@ typedef struct {
|
|||
ht *typedefs;
|
||||
|
||||
/* same as above but for the spelling corrector */
|
||||
ht *correct_variables;
|
||||
size_t ***correct_variables_score; /* vector of vector of size_t* */
|
||||
correct_trie_t **correct_variables;
|
||||
size_t ***correct_variables_score; /* vector of vector of size_t* */
|
||||
|
||||
/* not to be used directly, we use the hash table */
|
||||
ast_expression **_locals;
|
||||
|
@ -1999,7 +1999,7 @@ static void parser_enterblock(parser_t *parser)
|
|||
vec_push(parser->_block_ctx, parser_ctx(parser));
|
||||
|
||||
/* corrector */
|
||||
vec_push(parser->correct_variables, util_htnew(PARSER_HT_SIZE));
|
||||
vec_push(parser->correct_variables, correct_trie_new());
|
||||
vec_push(parser->correct_variables_score, NULL);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue