gmqcc/ast.c

1249 lines
35 KiB
C
Raw Normal View History

2012-04-25 15:22:16 +00:00
/*
* Copyright (C) 2012
2012-04-25 15:22:16 +00:00
* Wolfgang Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
2012-04-25 11:17:37 +00:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmqcc.h"
2012-04-25 11:17:37 +00:00
#include "ast.h"
2012-04-28 22:56:09 +00:00
#define ast_instantiate(T, ctx, destroyfn) \
T* self = (T*)mem_a(sizeof(T)); \
if (!self) { \
return NULL; \
} \
2012-04-28 22:56:09 +00:00
ast_node_init((ast_node*)self, ctx); \
( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
2012-04-25 11:17:37 +00:00
/* It must not be possible to get here. */
2012-06-07 15:09:29 +00:00
static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:19:22 +00:00
fprintf(stderr, "ast node missing destroy()\n");
abort();
2012-04-25 11:17:37 +00:00
}
/* Initialize main ast node aprts */
static void ast_node_init(ast_node *self, lex_ctx ctx)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:19:22 +00:00
self->node.context = ctx;
self->node.destroy = &_ast_node_destroy;
self->node.keep = false;
2012-04-25 11:17:37 +00:00
}
/* General expression initialization */
static void ast_expression_init(ast_expression *self,
ast_expression_codegen *codegen)
{
2012-04-28 10:51:44 +00:00
self->expression.codegen = codegen;
self->expression.vtype = TYPE_VOID;
self->expression.next = NULL;
}
static void ast_expression_delete(ast_expression *self)
{
if (self->expression.next)
ast_delete(self->expression.next);
}
static void ast_expression_delete_full(ast_expression *self)
{
ast_expression_delete(self);
mem_d(self);
}
static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
{
const ast_expression_common *cpex;
ast_expression_common *selfex;
if (!ex)
return NULL;
else
{
ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
cpex = &ex->expression;
selfex = &self->expression;
selfex->vtype = cpex->vtype;
if (cpex->next)
{
selfex->next = ast_type_copy(ctx, cpex->next);
if (!selfex->next) {
mem_d(self);
return NULL;
}
}
else
selfex->next = NULL;
/* This may never be codegen()d */
selfex->codegen = NULL;
return self;
}
2012-04-25 11:17:37 +00:00
}
ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:19:22 +00:00
ast_instantiate(ast_value, ctx, ast_value_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_value_codegen);
self->expression.node.keep = true; /* keep */
2012-04-25 11:19:22 +00:00
self->name = name ? util_strdup(name) : NULL;
self->expression.vtype = t;
self->expression.next = NULL;
2012-04-25 11:21:59 +00:00
MEM_VECTOR_INIT(self, params);
self->isconst = false;
memset(&self->constval, 0, sizeof(self->constval));
2012-04-25 11:19:22 +00:00
self->ir_v = NULL;
2012-04-25 11:19:22 +00:00
return self;
2012-04-25 11:17:37 +00:00
}
MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
void ast_value_delete(ast_value* self)
{
2012-04-25 11:19:22 +00:00
size_t i;
2012-04-25 11:20:04 +00:00
if (self->name)
mem_d((void*)self->name);
2012-04-25 11:19:22 +00:00
for (i = 0; i < self->params_count; ++i)
2012-04-29 17:45:14 +00:00
ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
2012-04-25 11:21:59 +00:00
MEM_VECTOR_CLEAR(self, params);
if (self->isconst) {
switch (self->expression.vtype)
2012-04-25 11:19:22 +00:00
{
case TYPE_STRING:
mem_d((void*)self->constval.vstring);
2012-04-25 11:19:22 +00:00
break;
case TYPE_FUNCTION:
/* unlink us from the function node */
self->constval.vfunc->vtype = NULL;
break;
2012-04-25 11:19:22 +00:00
/* NOTE: delete function? currently collected in
* the parser structure
*/
default:
break;
}
}
ast_expression_delete((ast_expression*)self);
2012-04-25 11:19:22 +00:00
mem_d(self);
2012-04-25 11:17:37 +00:00
}
2012-04-27 11:32:52 +00:00
bool ast_value_set_name(ast_value *self, const char *name)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:20:04 +00:00
if (self->name)
mem_d((void*)self->name);
self->name = util_strdup(name);
2012-04-27 11:32:52 +00:00
return !!self->name;
2012-04-25 11:17:37 +00:00
}
ast_binary* ast_binary_new(lex_ctx ctx, int op,
ast_expression* left, ast_expression* right)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:19:22 +00:00
ast_instantiate(ast_binary, ctx, ast_binary_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
2012-04-25 11:17:37 +00:00
2012-04-25 11:19:22 +00:00
self->op = op;
self->left = left;
self->right = right;
2012-04-25 11:17:37 +00:00
2012-04-25 11:19:22 +00:00
return self;
2012-04-25 11:17:37 +00:00
}
void ast_binary_delete(ast_binary *self)
{
ast_unref(self->left);
ast_unref(self->right);
ast_expression_delete((ast_expression*)self);
2012-04-25 11:19:22 +00:00
mem_d(self);
2012-04-25 11:17:37 +00:00
}
2012-05-01 13:08:54 +00:00
ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
{
const ast_expression *outtype;
2012-05-01 13:08:54 +00:00
ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
if (field->expression.vtype != TYPE_FIELD) {
mem_d(self);
return NULL;
}
outtype = field->expression.next;
if (!outtype) {
mem_d(self);
/* Error: field has no type... */
return NULL;
}
2012-05-01 13:08:54 +00:00
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
self->expression.vtype = outtype->expression.vtype;
self->expression.next = ast_type_copy(ctx, outtype->expression.next);
2012-05-01 13:08:54 +00:00
self->entity = entity;
self->field = field;
return self;
}
void ast_entfield_delete(ast_entfield *self)
{
ast_unref(self->entity);
ast_unref(self->field);
ast_expression_delete((ast_expression*)self);
2012-05-01 13:08:54 +00:00
mem_d(self);
}
ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
if (!ontrue && !onfalse) {
/* because it is invalid */
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
return self;
}
void ast_ifthen_delete(ast_ifthen *self)
{
ast_unref(self->cond);
if (self->on_true)
ast_unref(self->on_true);
if (self->on_false)
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
{
ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
/* This time NEITHER must be NULL */
if (!ontrue || !onfalse) {
mem_d(self);
return NULL;
}
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
self->cond = cond;
self->on_true = ontrue;
self->on_false = onfalse;
self->phi_out = NULL;
return self;
}
void ast_ternary_delete(ast_ternary *self)
{
ast_unref(self->cond);
ast_unref(self->on_true);
ast_unref(self->on_false);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
2012-05-03 19:57:13 +00:00
ast_loop* ast_loop_new(lex_ctx ctx,
ast_expression *initexpr,
ast_expression *precond,
ast_expression *postcond,
ast_expression *increment,
ast_expression *body)
2012-05-03 19:57:13 +00:00
{
ast_instantiate(ast_loop, ctx, ast_loop_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
self->initexpr = initexpr;
self->precond = precond;
self->postcond = postcond;
self->increment = increment;
self->body = body;
2012-05-03 19:57:13 +00:00
return self;
}
void ast_loop_delete(ast_loop *self)
{
if (self->initexpr)
ast_unref(self->initexpr);
if (self->precond)
ast_unref(self->precond);
if (self->postcond)
ast_unref(self->postcond);
if (self->increment)
ast_unref(self->increment);
if (self->body)
ast_unref(self->body);
2012-05-03 19:57:13 +00:00
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
2012-06-28 14:15:51 +00:00
ast_call* ast_call_new(lex_ctx ctx,
ast_expression *funcexpr)
{
ast_instantiate(ast_call, ctx, ast_call_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
MEM_VECTOR_INIT(self, params);
2012-07-04 12:41:39 +00:00
self->func = funcexpr;
2012-06-28 14:15:51 +00:00
return self;
}
2012-07-04 12:39:58 +00:00
MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
2012-06-28 14:15:51 +00:00
void ast_call_delete(ast_call *self)
{
size_t i;
for (i = 0; i < self->params_count; ++i)
ast_unref(self->params[i]);
MEM_VECTOR_CLEAR(self, params);
if (self->func)
ast_unref(self->func);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_store* ast_store_new(lex_ctx ctx, int op,
ast_value *dest, ast_expression *source)
{
ast_instantiate(ast_store, ctx, ast_store_delete);
ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
self->op = op;
self->dest = dest;
self->source = source;
return self;
}
void ast_store_delete(ast_store *self)
{
ast_unref(self->dest);
ast_unref(self->source);
ast_expression_delete((ast_expression*)self);
mem_d(self);
}
ast_block* ast_block_new(lex_ctx ctx)
2012-04-25 11:17:37 +00:00
{
2012-04-25 11:19:22 +00:00
ast_instantiate(ast_block, ctx, ast_block_delete);
ast_expression_init((ast_expression*)self,
(ast_expression_codegen*)&ast_block_codegen);
2012-04-25 11:17:37 +00:00
2012-04-25 11:21:59 +00:00
MEM_VECTOR_INIT(self, locals);
MEM_VECTOR_INIT(self, exprs);
2012-04-25 11:17:37 +00:00
2012-04-25 11:19:22 +00:00
return self;
2012-04-25 11:17:37 +00:00
}
MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
void ast_block_delete(ast_block *self)
{
2012-04-25 11:19:22 +00:00
size_t i;
for (i = 0; i < self->exprs_count; ++i)
ast_unref(self->exprs[i]);
2012-04-25 11:21:59 +00:00
MEM_VECTOR_CLEAR(self, exprs);
for (i = 0; i < self->locals_count; ++i)
ast_delete(self->locals[i]);
MEM_VECTOR_CLEAR(self, locals);
ast_expression_delete((ast_expression*)self);
2012-04-25 11:19:22 +00:00
mem_d(self);
2012-04-25 11:17:37 +00:00
}
ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
2012-04-25 11:17:37 +00:00
{
2012-04-28 22:56:09 +00:00
ast_instantiate(ast_function, ctx, ast_function_delete);
if (!vtype ||
vtype->isconst ||
vtype->expression.vtype != TYPE_FUNCTION)
{
mem_d(self);
return NULL;
}
2012-04-25 11:19:22 +00:00
self->vtype = vtype;
2012-04-25 11:20:04 +00:00
self->name = name ? util_strdup(name) : NULL;
2012-04-25 11:21:59 +00:00
MEM_VECTOR_INIT(self, blocks);
MEM_VECTOR_INIT(self, params);
2012-04-25 11:17:37 +00:00
self->labelcount = 0;
self->builtin = 0;
self->ir_func = NULL;
self->curblock = NULL;
self->breakblock = NULL;
self->continueblock = NULL;
vtype->isconst = true;
vtype->constval.vfunc = self;
2012-04-25 11:19:22 +00:00
return self;
2012-04-25 11:17:37 +00:00
}
MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
MEM_VEC_FUNCTIONS(ast_function, ast_value*, params)
2012-04-25 11:17:37 +00:00
void ast_function_delete(ast_function *self)
{
2012-04-25 11:19:22 +00:00
size_t i;
2012-04-25 11:20:04 +00:00
if (self->name)
mem_d((void*)self->name);
if (self->vtype) {
/* ast_value_delete(self->vtype); */
self->vtype->isconst = false;
self->vtype->constval.vfunc = NULL;
/* We use unref - if it was stored in a global table it is supposed
* to be deleted from *there*
*/
ast_unref(self->vtype);
}
2012-04-25 11:19:22 +00:00
for (i = 0; i < self->blocks_count; ++i)
ast_delete(self->blocks[i]);
2012-04-25 11:21:59 +00:00
MEM_VECTOR_CLEAR(self, blocks);
for (i = 0; i < self->params_count; ++i)
ast_delete(self->params[i]);
MEM_VECTOR_CLEAR(self, params);
2012-04-25 11:19:22 +00:00
mem_d(self);
2012-04-25 11:17:37 +00:00
}
2012-04-25 11:24:25 +00:00
static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
{
unsigned int base = 10;
#define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
#define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
if (size < 1)
return;
checknul();
if (!num)
addch('0');
else {
while (num)
{
int digit = num % base;
num /= base;
addch('0' + digit);
}
}
*buf = 0;
#undef addch
#undef checknul
}
const char* ast_function_label(ast_function *self, const char *prefix)
{
size_t id = (self->labelcount++);
size_t len = strlen(prefix);
strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
return self->labelbuf;
}
2012-04-25 11:24:25 +00:00
/*********************************************************************/
/* AST codegen part
* by convention you must never pass NULL to the 'ir_value **out'
* parameter. If you really don't care about the output, pass a dummy.
* But I can't imagine a pituation where the output is truly unnecessary.
2012-04-25 11:24:25 +00:00
*/
2012-05-01 13:14:44 +00:00
bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
2012-04-26 08:28:42 +00:00
{
/* NOTE: This is the codegen for a variable used in an expression.
* It is not the codegen to generate the value. For this purpose,
* ast_local_codegen and ast_global_codegen are to be used before this
* is executed. ast_function_codegen should take care of its locals,
* and the ast-user should take care of ast_global_codegen to be used
* on all the globals.
*/
if (!self->ir_v)
return false;
*out = self->ir_v;
return true;
}
bool ast_global_codegen(ast_value *self, ir_builder *ir)
{
2012-04-28 22:56:09 +00:00
ir_value *v = NULL;
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
{
ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
if (!func)
return false;
self->constval.vfunc->ir_func = func;
/* The function is filled later on ast_function_codegen... */
return true;
}
v = ir_builder_create_global(ir, self->name, self->expression.vtype);
if (!v)
return false;
if (self->isconst) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
case TYPE_FUNCTION:
printf("global of type function not properly generated\n");
goto error;
/* Cannot generate an IR value for a function,
* need a pointer pointing to a function rather.
*/
default:
printf("TODO: global constant type %i\n", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_local_codegen(ast_value *self, ir_function *func)
{
ir_value *v = NULL;
if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
{
/* Do we allow local functions? I think not...
* this is NOT a function pointer atm.
*/
return false;
}
v = ir_function_create_local(func, self->name, self->expression.vtype);
if (!v)
return false;
/* A constant local... hmmm...
* I suppose the IR will have to deal with this
*/
if (self->isconst) {
switch (self->expression.vtype)
{
case TYPE_FLOAT:
if (!ir_value_set_float(v, self->constval.vfloat))
goto error;
break;
case TYPE_VECTOR:
if (!ir_value_set_vector(v, self->constval.vvec))
goto error;
break;
case TYPE_STRING:
if (!ir_value_set_string(v, self->constval.vstring))
goto error;
break;
default:
printf("TODO: global constant type %i\n", self->expression.vtype);
break;
}
}
/* link us to the ir_value */
self->ir_v = v;
return true;
error: /* clean up */
ir_value_delete(v);
return false;
}
bool ast_function_codegen(ast_function *self, ir_builder *ir)
{
ir_function *irf;
ir_value *dummy;
size_t i;
irf = self->ir_func;
if (!irf) {
printf("ast_function's related ast_value was not generated yet\n");
return false;
}
for (i = 0; i < self->params_count; ++i)
{
if (!ir_function_params_add(irf, self->params[i]->expression.vtype))
return false;
}
if (self->builtin) {
irf->builtin = self->builtin;
return true;
}
self->curblock = ir_function_create_block(irf, "entry");
if (!self->curblock)
return false;
for (i = 0; i < self->blocks_count; ++i) {
ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
return false;
}
/* TODO: check return types */
if (!self->curblock->is_return)
{
if (!self->vtype->expression.next ||
self->vtype->expression.next->expression.vtype == TYPE_VOID)
return ir_block_create_return(self->curblock, NULL);
else
{
/* error("missing return"); */
return false;
}
}
return true;
2012-04-26 08:28:42 +00:00
}
/* Note, you will not see ast_block_codegen generate ir_blocks.
* To the AST and the IR, blocks are 2 different things.
* In the AST it represents a block of code, usually enclosed in
* curly braces {...}.
* While in the IR it represents a block in terms of control-flow.
*/
2012-05-01 13:14:44 +00:00
bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
2012-04-26 08:28:42 +00:00
{
size_t i;
/* We don't use this
* Note: an ast-representation using the comma-operator
* of the form: (a, b, c) = x should not assign to c...
*/
(void)lvalue;
/* output is NULL at first, we'll have each expression
* assign to out output, thus, a comma-operator represention
* using an ast_block will return the last generated value,
* so: (b, c) + a executed both b and c, and returns c,
* which is then added to a.
*/
*out = NULL;
/* generate locals */
for (i = 0; i < self->locals_count; ++i)
{
if (!ast_local_codegen(self->locals[i], func->ir_func))
return false;
}
for (i = 0; i < self->exprs_count; ++i)
{
ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
if (!(*gen)(self->exprs[i], func, false, out))
return false;
}
return true;
2012-04-26 08:28:42 +00:00
}
2012-05-01 13:14:44 +00:00
bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
cgen = self->dest->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
return false;
cgen = self->source->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
return false;
if (!ir_block_create_store_op(func->curblock, self->op, left, right))
return false;
/* Theoretically, an assinment returns its left side as an
* lvalue, if we don't need an lvalue though, we return
* the right side as an rvalue, otherwise we have to
* somehow know whether or not we need to dereference the pointer
* on the left side - that is: OP_LOAD if it was an address.
* Also: in original QC we cannot OP_LOADP *anyway*.
*/
*out = (lvalue ? left : right);
return true;
}
2012-05-01 13:14:44 +00:00
bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *left, *right;
/* In the context of a binary operation, we can disregard
* the lvalue flag.
*/
(void)lvalue;
cgen = self->left->expression.codegen;
/* lvalue! */
if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
return false;
cgen = self->right->expression.codegen;
/* rvalue! */
if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
return false;
*out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
self->op, left, right);
if (!*out)
return false;
return true;
}
2012-05-01 13:08:54 +00:00
2012-05-01 13:14:44 +00:00
bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2012-05-01 13:08:54 +00:00
{
2012-05-03 10:19:33 +00:00
ast_expression_codegen *cgen;
ir_value *ent, *field;
/* This function needs to take the 'lvalue' flag into account!
* As lvalue we provide a field-pointer, as rvalue we provide the
* value in a temp.
*/
cgen = self->entity->expression.codegen;
if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
return false;
cgen = self->field->expression.codegen;
if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
return false;
if (lvalue) {
/* address! */
*out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
2012-05-03 10:19:33 +00:00
ent, field);
} else {
*out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
2012-05-03 10:19:33 +00:00
ent, field, self->expression.vtype);
}
if (!*out)
return false;
/* Hm that should be it... */
return true;
2012-05-01 13:08:54 +00:00
}
bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
{
2012-05-03 10:38:43 +00:00
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *dummy;
ir_block *cond = func->curblock;
ir_block *ontrue;
ir_block *onfalse;
ir_block *merge;
/* We don't output any value, thus also don't care about r/lvalue */
(void)out;
(void)lvalue;
/* generate the condition */
func->curblock = cond;
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
/* on-true path */
2012-05-03 10:38:43 +00:00
if (self->on_true) {
/* create on-true block */
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
2012-05-03 10:38:43 +00:00
if (!ontrue)
return false;
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
return false;
2012-05-03 10:38:43 +00:00
} else
ontrue = NULL;
2012-06-11 17:25:21 +00:00
/* on-false path */
2012-05-03 10:38:43 +00:00
if (self->on_false) {
/* create on-false block */
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
2012-05-03 10:38:43 +00:00
if (!onfalse)
return false;
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
return false;
2012-05-03 10:38:43 +00:00
} else
onfalse = NULL;
/* Merge block were they all merge in to */
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
2012-05-03 10:38:43 +00:00
if (!merge)
2012-06-11 17:25:21 +00:00
return false;
2012-05-03 10:38:43 +00:00
/* add jumps ot the merge block */
if (ontrue && !ir_block_create_jump(ontrue, merge))
return false;
if (onfalse && !ir_block_create_jump(onfalse, merge))
2012-05-03 10:38:43 +00:00
return false;
/* we create the if here, that way all blocks are ordered :)
*/
2012-05-03 10:38:43 +00:00
if (!ir_block_create_if(cond, condval,
(ontrue ? ontrue : merge),
(onfalse ? onfalse : merge)))
{
return false;
}
/* Now enter the merge block */
func->curblock = merge;
return true;
}
bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *condval;
ir_value *trueval, *falseval;
ir_instr *phi;
ir_block *cond = func->curblock;
ir_block *ontrue;
ir_block *onfalse;
ir_block *merge;
/* In theory it shouldn't be possible to pass through a node twice, but
* in case we add any kind of optimization pass for the AST itself, it
* may still happen, thus we remember a created ir_value and simply return one
* if it already exists.
*/
if (self->phi_out) {
*out = self->phi_out;
return true;
}
/* Ternary can never create an lvalue... */
if (lvalue)
return false;
/* In the following, contraty to ast_ifthen, we assume both paths exist. */
2012-06-11 17:25:21 +00:00
/* generate the condition */
func->curblock = cond;
cgen = self->cond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
return false;
/* create on-true block */
ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
if (!ontrue)
return false;
else
{
/* enter the block */
func->curblock = ontrue;
/* generate */
cgen = self->on_true->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
return false;
}
2012-06-11 17:25:21 +00:00
/* create on-false block */
onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
if (!onfalse)
return false;
else
{
/* enter the block */
func->curblock = onfalse;
/* generate */
cgen = self->on_false->expression.codegen;
if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
return false;
}
/* create merge block */
merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
if (!merge)
2012-06-11 17:25:21 +00:00
return false;
/* jump to merge block */
if (!ir_block_create_jump(ontrue, merge))
return false;
if (!ir_block_create_jump(onfalse, merge))
return false;
/* create if instruction */
if (!ir_block_create_if(cond, condval, ontrue, onfalse))
return false;
/* Now enter the merge block */
func->curblock = merge;
/* Here, now, we need a PHI node
* but first some sanity checking...
*/
if (trueval->vtype != falseval->vtype) {
/* error("ternary with different types on the two sides"); */
return false;
}
/* create PHI */
phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
if (!phi ||
!ir_phi_add(phi, ontrue, trueval) ||
!ir_phi_add(phi, onfalse, falseval))
{
return false;
}
self->phi_out = ir_phi_value(phi);
*out = self->phi_out;
return true;
}
2012-05-03 19:57:13 +00:00
bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value *dummy = NULL;
ir_value *precond = NULL;
ir_value *postcond = NULL;
/* Since we insert some jumps "late" so we have blocks
* ordered "nicely", we need to keep track of the actual end-blocks
* of expressions to add the jumps to.
*/
ir_block *bbody = NULL, *end_bbody = NULL;
ir_block *bprecond = NULL, *end_bprecond = NULL;
ir_block *bpostcond = NULL, *end_bpostcond = NULL;
ir_block *bincrement = NULL, *end_bincrement = NULL;
ir_block *bout = NULL, *bin = NULL;
/* let's at least move the outgoing block to the end */
size_t bout_id;
/* 'break' and 'continue' need to be able to find the right blocks */
ir_block *bcontinue = NULL;
ir_block *bbreak = NULL;
ir_block *old_bcontinue = NULL;
ir_block *old_bbreak = NULL;
ir_block *tmpblock = NULL;
(void)lvalue;
(void)out;
/* NOTE:
* Should we ever need some kind of block ordering, better make this function
* move blocks around than write a block ordering algorithm later... after all
* the ast and ir should work together, not against each other.
*/
/* initexpr doesn't get its own block, it's pointless, it could create more blocks
* anyway if for example it contains a ternary.
*/
if (self->initexpr)
{
cgen = self->initexpr->expression.codegen;
if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
return false;
}
/* Store the block from which we enter this chaos */
bin = func->curblock;
/* The pre-loop condition needs its own block since we
* need to be able to jump to the start of that expression.
*/
if (self->precond)
{
bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
if (!bprecond)
return false;
/* the pre-loop-condition the least important place to 'continue' at */
bcontinue = bprecond;
/* enter */
func->curblock = bprecond;
/* generate */
cgen = self->precond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
return false;
end_bprecond = func->curblock;
} else {
bprecond = end_bprecond = NULL;
}
/* Now the next blocks won't be ordered nicely, but we need to
* generate them this early for 'break' and 'continue'.
*/
if (self->increment) {
bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
if (!bincrement)
return false;
bcontinue = bincrement; /* increment comes before the pre-loop-condition */
} else {
bincrement = end_bincrement = NULL;
}
if (self->postcond) {
bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
if (!bpostcond)
return false;
bcontinue = bpostcond; /* postcond comes before the increment */
} else {
bpostcond = end_bpostcond = NULL;
}
bout_id = func->ir_func->blocks_count;
bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
if (!bout)
return false;
bbreak = bout;
/* The loop body... */
if (self->body)
{
bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
if (!bbody)
return false;
/* enter */
func->curblock = bbody;
old_bbreak = func->breakblock;
old_bcontinue = func->continueblock;
func->breakblock = bbreak;
func->continueblock = bcontinue;
/* generate */
cgen = self->body->expression.codegen;
if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
return false;
end_bbody = func->curblock;
func->breakblock = old_bbreak;
func->continueblock = old_bcontinue;
}
/* post-loop-condition */
if (self->postcond)
{
/* enter */
func->curblock = bpostcond;
/* generate */
cgen = self->postcond->expression.codegen;
if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
return false;
end_bpostcond = func->curblock;
}
/* The incrementor */
if (self->increment)
{
/* enter */
func->curblock = bincrement;
/* generate */
cgen = self->increment->expression.codegen;
if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
return false;
end_bincrement = func->curblock;
}
/* In any case now, we continue from the outgoing block */
func->curblock = bout;
/* Now all blocks are in place */
/* From 'bin' we jump to whatever comes first */
if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else if (bpostcond) tmpblock = bpostcond;
else tmpblock = bout;
if (!ir_block_create_jump(bin, tmpblock))
return false;
/* From precond */
if (bprecond)
{
ir_block *ontrue, *onfalse;
if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else if (bpostcond) ontrue = bpostcond;
else ontrue = bprecond;
onfalse = bout;
if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
return false;
}
/* from body */
if (bbody)
{
if (bincrement) tmpblock = bincrement;
else if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else tmpblock = bout;
if (!ir_block_create_jump(end_bbody, tmpblock))
return false;
}
/* from increment */
if (bincrement)
{
if (bpostcond) tmpblock = bpostcond;
else if (bprecond) tmpblock = bprecond;
else if (bbody) tmpblock = bbody;
else tmpblock = bout;
if (!ir_block_create_jump(end_bincrement, tmpblock))
return false;
}
/* from postcond */
if (bpostcond)
{
ir_block *ontrue, *onfalse;
if (bprecond) ontrue = bprecond;
else if (bbody) ontrue = bbody;
else if (bincrement) ontrue = bincrement;
else ontrue = bpostcond;
onfalse = bout;
if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
return false;
}
/* Move 'bout' to the end */
if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
!ir_function_blocks_add(func->ir_func, bout))
{
ir_block_delete(bout);
return false;
}
return true;
2012-05-03 19:57:13 +00:00
}
2012-06-28 14:15:51 +00:00
bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
{
ast_expression_codegen *cgen;
ir_value_vector params;
ir_instr *callinstr;
size_t i;
ir_value *funval = NULL;
/* return values are never rvalues */
(void)lvalue;
cgen = self->func->expression.codegen;
if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
return false;
if (!funval)
return false;
MEM_VECTOR_INIT(&params, v);
/* parameters */
for (i = 0; i < self->params_count; ++i)
{
ir_value *param;
ast_expression *expr = self->params[i];
cgen = expr->expression.codegen;
if (!(*cgen)(expr, func, false, &param))
goto error;
if (!param)
goto error;
if (!ir_value_vector_v_add(&params, param))
goto error;
}
callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
if (!callinstr)
goto error;
for (i = 0; i < params.v_count; ++i) {
if (!ir_call_param(callinstr, params.v[i]))
goto error;
}
*out = ir_call_value(callinstr);
return true;
error:
MEM_VECTOR_CLEAR(&params, v);
2012-06-28 14:15:51 +00:00
return false;
}