2012-12-21 11:18:57 +00:00
|
|
|
#include "gmqcc.h"
|
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
/*
|
|
|
|
* Based on the flexible and economical utf8 decoder:
|
|
|
|
* http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
|
|
|
|
*
|
|
|
|
* This is slightly more economical, the fastest way to decode utf8 is
|
|
|
|
* with a lookup table as in:
|
|
|
|
*
|
|
|
|
* first 1-byte lookup
|
|
|
|
* if that fails, 2-byte lookup
|
|
|
|
* if that fails, 3-byte lookup
|
|
|
|
* if that fails, 4-byte lookup
|
|
|
|
*
|
|
|
|
* The following table can be generated with some interval trickery.
|
|
|
|
* consider an interval [a, b):
|
|
|
|
*
|
|
|
|
* a must be 0x80 or b must be 0xc0, lower 3 bits
|
|
|
|
* are clear, thus:
|
|
|
|
* interval(a,b) = ((uint32_t)((a==0x80?0x40-b:-a)<<23))
|
|
|
|
*
|
|
|
|
* The failstate can be represented as interval(0x80,0x80), it's
|
|
|
|
* odd to see but this is a full state machine.
|
|
|
|
*
|
|
|
|
* The table than maps the corresponding sections as a serise of
|
|
|
|
* intervals.
|
|
|
|
*
|
|
|
|
* In this table the transition values are pre-multiplied with 16 to
|
|
|
|
* save a shift instruction for every byte, we throw away fillers
|
|
|
|
* which makes the table smaller.
|
2013-10-11 02:10:36 +00:00
|
|
|
*
|
|
|
|
* The first section of the table handles bytes with leading C
|
|
|
|
* The second section of the table handles bytes with leading D
|
|
|
|
* The third section of the table handles bytes with leading E
|
|
|
|
* The last section of the table handles bytes with leading F
|
|
|
|
*
|
|
|
|
* The values themselfs in the table are arranged so that when you
|
2013-10-11 02:12:03 +00:00
|
|
|
* left shift them by 6 to shift continuation characters into place, the
|
|
|
|
* new top bits tell you:
|
2013-10-11 02:10:36 +00:00
|
|
|
*
|
|
|
|
* 1 - if you keep going
|
|
|
|
* 2 - the range of valid values for the next byte
|
2012-12-21 11:18:57 +00:00
|
|
|
*/
|
2013-10-11 01:44:40 +00:00
|
|
|
static const uint32_t utf8_tab[] = {
|
2013-10-11 04:22:27 +00:00
|
|
|
0xC0000002, 0xC0000003, 0xC0000004, 0xC0000005, 0xC0000006,
|
|
|
|
0xC0000007, 0xC0000008, 0xC0000009, 0xC000000A, 0xC000000B,
|
|
|
|
0xC000000C, 0xC000000D, 0xC000000E, 0xC000000F, 0xC0000010,
|
|
|
|
0xC0000011, 0xC0000012, 0xC0000013, 0xC0000014, 0xC0000015,
|
|
|
|
0xC0000016, 0xC0000017, 0xC0000018, 0xC0000019, 0xC000001A,
|
|
|
|
0xC000001B, 0xC000001C, 0xC000001D, 0xC000001E, 0xC000001F,
|
|
|
|
0xB3000000, 0xC3000001, 0xC3000002, 0xC3000003, 0xC3000004,
|
|
|
|
0xC3000005, 0xC3000006, 0xC3000007, 0xC3000008, 0xC3000009,
|
|
|
|
0xC300000A, 0xC300000B, 0xC300000C, 0xD300000D, 0xC300000E,
|
|
|
|
0xC300000F, 0xBB0C0000, 0xC30C0001, 0xC30C0002, 0xC30C0003,
|
|
|
|
0xD30C0004
|
2013-10-11 01:44:40 +00:00
|
|
|
};
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
int utf8_from(char *s, utf8ch_t ch) {
|
|
|
|
if (!s)
|
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
if ((unsigned)ch < 0x80) {
|
|
|
|
*s = ch;
|
|
|
|
return 1;
|
|
|
|
} else if ((unsigned)ch < 0x800) {
|
|
|
|
*s++ = 0xC0 | (ch >> 6);
|
|
|
|
*s = 0x80 | (ch & 0x3F);
|
|
|
|
return 2;
|
|
|
|
} else if ((unsigned)ch < 0xD800 || (unsigned)ch - 0xE000 < 0x2000) {
|
|
|
|
*s++ = 0xE0 | (ch >> 12);
|
|
|
|
*s++ = 0x80 | ((ch >> 6) & 0x3F);
|
|
|
|
*s = 0x80 | (ch & 0x3F);
|
|
|
|
return 3;
|
|
|
|
} else if ((unsigned)ch - 0x10000 < 0x100000) {
|
|
|
|
*s++ = 0xF0 | (ch >> 18);
|
|
|
|
*s++ = 0x80 | ((ch >> 12) & 0x3F);
|
|
|
|
*s++ = 0x80 | ((ch >> 6) & 0x3F);
|
|
|
|
*s = 0x80 | (ch & 0x3F);
|
|
|
|
return 4;
|
2012-12-28 12:57:41 +00:00
|
|
|
}
|
2013-10-11 01:44:40 +00:00
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
}
|
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
int utf8_to(utf8ch_t *i, const unsigned char *s, size_t n) {
|
|
|
|
unsigned c,j;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
if (!s || !n)
|
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
/* This is consistent with mbtowc behaviour. */
|
|
|
|
if (!i)
|
|
|
|
i = (utf8ch_t*)(void*)&i;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
if (*s < 0x80)
|
|
|
|
return !!(*i = *s);
|
2013-10-11 02:03:13 +00:00
|
|
|
if (*s-0xC2U > 0x32)
|
2013-10-11 01:44:40 +00:00
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
c = utf8_tab[*s++-0xC2U];
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
/*
|
|
|
|
* Avoid excessive checks against n.
|
|
|
|
*
|
|
|
|
* When shifting state `n-1` times does not clear the high bit,
|
|
|
|
* then the value of `n` won't satisfy the condition to read a
|
|
|
|
* character as it will be insufficent.
|
|
|
|
*/
|
|
|
|
if (n < 4 && ((c<<(6*n-6)) & (1U << 31)))
|
2012-12-28 12:57:41 +00:00
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
/*
|
|
|
|
* The upper 6 state bits are negitive integer offset to a bound-check
|
|
|
|
* next byte equivlant to: ((b-0x80)+(b+offset))&~0x3f
|
|
|
|
*/
|
|
|
|
if ((((*s>>3)-0x10)|((*s>>3)+((int32_t)c>>26))) & ~7)
|
2012-12-28 12:57:41 +00:00
|
|
|
return 0;
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
for (j=2; j<3; j++) {
|
|
|
|
if (!((c = c<<6 | (*s++-0x80))&(1U<<31))) {
|
|
|
|
*i = c;
|
|
|
|
return j;
|
2012-12-28 12:57:41 +00:00
|
|
|
}
|
2013-10-11 01:44:40 +00:00
|
|
|
if (*s-0x80U >= 0x40)
|
|
|
|
return 0;
|
2012-12-28 12:57:41 +00:00
|
|
|
}
|
2012-12-21 11:18:57 +00:00
|
|
|
|
2013-10-11 01:44:40 +00:00
|
|
|
*i = c<<6 | (*s++-0x80);
|
|
|
|
return 4;
|
2012-12-21 11:18:57 +00:00
|
|
|
}
|