mirror of
https://bitbucket.org/CPMADevs/cnq3
synced 2024-11-10 14:41:48 +00:00
a76dba5cfb
- brightness-corrected ImGUI drawing - upgraded shader code to HLSL 2021 - vertex normals drawing
318 lines
8.3 KiB
HLSL
318 lines
8.3 KiB
HLSL
/*
|
|
===========================================================================
|
|
Copyright (C) 2023-2024 Gian 'myT' Schellenbaum
|
|
|
|
This file is part of Challenge Quake 3 (CNQ3).
|
|
|
|
Challenge Quake 3 is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Challenge Quake 3 is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
|
|
===========================================================================
|
|
*/
|
|
// shared utilities
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
#include "../common/state_bits.h.hlsli"
|
|
#include "../common/blend.hlsli"
|
|
|
|
|
|
#define PI 3.1415926535897932384626433832795
|
|
#define PI_D2 (PI / 2.0)
|
|
#define PI_D4 (PI / 4.0)
|
|
#define PI_M2 (PI * 2.0)
|
|
|
|
|
|
float DegToRad(float deg)
|
|
{
|
|
return PI * (deg / 180.0);
|
|
}
|
|
|
|
float RadToDeg(float rad)
|
|
{
|
|
return 180.0 * (rad / PI);
|
|
}
|
|
|
|
float Brightness(float3 color)
|
|
{
|
|
float brightness = dot(color, float3(0.299, 0.587, 0.114));
|
|
|
|
return brightness;
|
|
}
|
|
|
|
float4 MakeGreyscale(float4 input, float amount)
|
|
{
|
|
float grey = dot(input.rgb, float3(0.299, 0.587, 0.114));
|
|
float4 result = lerp(input, float4(grey, grey, grey, input.a), amount);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
f = far clip plane distance
|
|
n = near clip plane distance
|
|
exp = exponential depth value (as stored in the Z-buffer)
|
|
|
|
2 * f * n B
|
|
linear(exp) = ----------------------- = -------
|
|
(f + n) - exp * (f - n) exp - A
|
|
|
|
f + n -2 * f * n
|
|
with A = ----- and B = ----------
|
|
f - n f - n
|
|
*/
|
|
float LinearDepth(float zwDepth, float A, float B)
|
|
{
|
|
return B / (zwDepth - A);
|
|
}
|
|
|
|
float4 FSTrianglePosFromVertexId(uint id)
|
|
{
|
|
return float4(
|
|
(float)(id / 2) * 4.0 - 1.0,
|
|
(float)(id % 2) * 4.0 - 1.0,
|
|
0.0,
|
|
1.0);
|
|
}
|
|
|
|
float2 FSTriangleTCFromVertexId(uint id)
|
|
{
|
|
return float2(
|
|
(float)(id / 2) * 2.0,
|
|
1.0 - (float)(id % 2) * 2.0);
|
|
}
|
|
|
|
uint PackColor(float4 c)
|
|
{
|
|
uint4 u = uint4(saturate(c) * 255.0);
|
|
uint r = u.r | (u.g << 8) | (u.b << 16) | (u.a << 24);
|
|
|
|
return r;
|
|
}
|
|
|
|
float4 UnpackColor(uint c)
|
|
{
|
|
uint4 u = uint4(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu, (c >> 24) & 0xFFu);
|
|
float4 r = float4(u) / 255.0;
|
|
|
|
return r;
|
|
}
|
|
|
|
float EaseInCubic(float x)
|
|
{
|
|
return x * x * x;
|
|
}
|
|
|
|
float EaseOutCubic(float x)
|
|
{
|
|
float y = 1.0 - x;
|
|
|
|
return 1.0 - y * y * y;
|
|
}
|
|
|
|
float EaseInOutCubic(float x)
|
|
{
|
|
if(x < 0.5)
|
|
{
|
|
return 4 * x * x * x;
|
|
}
|
|
|
|
float y = -2 * x + 2;
|
|
|
|
return 1 - 0.5 * y * y * y;
|
|
}
|
|
|
|
float EaseInQuad(float x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
float smoothstep01(float x)
|
|
{
|
|
return smoothstep(0.0, 1.0, x);
|
|
}
|
|
|
|
// Oct*: octahedron normal vector encoding
|
|
// original code from "A Survey of Efficient Representations for Independent Unit Vectors"
|
|
// further improved by Krzysztof Narkowicz and Rune Stubbe
|
|
|
|
float2 OctWrap(float2 v)
|
|
{
|
|
return (1.0 - abs(v.yx)) * select(v.xy >= 0.0, 1.0, -1.0);
|
|
}
|
|
|
|
float2 OctEncode(float3 n)
|
|
{
|
|
n /= (abs(n.x) + abs(n.y) + abs(n.z));
|
|
n.xy = n.z >= 0.0 ? n.xy : OctWrap(n.xy);
|
|
n.xy = n.xy * 0.5 + 0.5;
|
|
|
|
return n.xy;
|
|
}
|
|
|
|
float3 OctDecode(float2 f)
|
|
{
|
|
f = f * 2.0 - 1.0;
|
|
float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y));
|
|
float t = saturate(-n.z);
|
|
n.xy += select(n.xy >= 0.0, -t, t);
|
|
|
|
return normalize(n);
|
|
}
|
|
|
|
float3 GetPositionFromDepth(float2 tc01, float depthZW, matrix invMatrix)
|
|
{
|
|
float x = tc01.x * 2.0 - 1.0;
|
|
float y = (1.0 - tc01.y) * 2.0 - 1.0;
|
|
float4 position = mul(float4(x, y, depthZW, 1.0), invMatrix);
|
|
float3 result = position.xyz / position.w;
|
|
|
|
return result;
|
|
}
|
|
|
|
float3 TransformNormal(float3 normal, matrix transform)
|
|
{
|
|
return mul(transform, float4(normal, 0)).xyz;
|
|
}
|
|
|
|
float3 TransformPoint(float3 position, matrix transform)
|
|
{
|
|
float4 result = mul(transform, float4(position, 1));
|
|
return result.xyz / result.w;
|
|
}
|
|
|
|
float3 RandomColorFromUInt(uint id)
|
|
{
|
|
float r = frac(0.420 + 1.337 * id);
|
|
float g = frac(0.69 + 1.666 * id);
|
|
float b = frac(0.13 + 1.777 * id);
|
|
|
|
return float3(r, g, b);
|
|
}
|
|
|
|
float3 BiasPosition(float3 position, float3 normal)
|
|
{
|
|
float3 result = position + sign(normal) * abs(position * 0.0000002);
|
|
|
|
return result;
|
|
}
|
|
|
|
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
|
|
// Projects the specified position (point) onto the plane with the specified origin and normal.
|
|
float3 ProjectPointOnPlane(float3 position, float3 planeOrigin, float3 planeNormal)
|
|
{
|
|
return position - dot(position - planeOrigin, planeNormal) * planeNormal;
|
|
}
|
|
|
|
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
|
|
// Computes the shading position of the specified geometric position and vertex positions and
|
|
// normals. For a triangle with normals describing a convex surface, this point will be slightly
|
|
// above the surface. For a concave surface, the geometry position is used directly.
|
|
// NOTE: The difference between the shading position and geometry position is significant when
|
|
// casting shadow rays. If the geometric position is used, a triangle may fully shadow itself when
|
|
// it should be partly lit based on the shading normals; this is the "shadow terminator" problem.
|
|
float3 GetShadingPosition(
|
|
float3 geomPosition, float3 shadingNormal,
|
|
float3 positions[3], float3 normals[3], float3 barycentrics)
|
|
{
|
|
// Project the geometric position (inside the triangle) to the planes defined by the vertex
|
|
// positions and normals.
|
|
float3 p0 = ProjectPointOnPlane(geomPosition, positions[0], normals[0]);
|
|
float3 p1 = ProjectPointOnPlane(geomPosition, positions[1], normals[1]);
|
|
float3 p2 = ProjectPointOnPlane(geomPosition, positions[2], normals[2]);
|
|
|
|
// Interpolate the projected positions using the barycentric coordinates, which gives the
|
|
// shading position.
|
|
float3 shadingPosition = p0 * barycentrics.x + p1 * barycentrics.y + p2 * barycentrics.z;
|
|
|
|
// Return the shading position for a convex triangle, where the shading point is above the
|
|
// triangle based on the shading normal. Otherwise use the geometric position.
|
|
bool convex = dot(shadingPosition - geomPosition, shadingNormal) > 0.0;
|
|
float3 result = convex ? shadingPosition : BiasPosition(geomPosition, shadingNormal);
|
|
|
|
return result;
|
|
}
|
|
|
|
// based on "Hacking the Shadow Terminator" by Johannes Hanika in "Ray Tracing Gems II"
|
|
float3 GetShadingPositionV2(float3 geomPosition, float3 positions[3], float3 normals[3], float3 barycentrics)
|
|
{
|
|
float3 tmpu = geomPosition - positions[0];
|
|
float3 tmpv = geomPosition - positions[1];
|
|
float3 tmpw = geomPosition - positions[2];
|
|
float dotu = min(0.0, dot(tmpu, normals[0]));
|
|
float dotv = min(0.0, dot(tmpv, normals[1]));
|
|
float dotw = min(0.0, dot(tmpw, normals[2]));
|
|
tmpu -= dotu * normals[0];
|
|
tmpv -= dotv * normals[1];
|
|
tmpw -= dotw * normals[2];
|
|
float3 shadingPosition = geomPosition + 1.0 * (barycentrics.x * tmpu + barycentrics.y * tmpv + barycentrics.z * tmpw);
|
|
|
|
return shadingPosition;
|
|
}
|
|
|
|
template<typename T>
|
|
T trilerp(T v0, T v1, T v2, float3 barycentrics)
|
|
{
|
|
return
|
|
barycentrics.x * v0 +
|
|
barycentrics.y * v1 +
|
|
barycentrics.z * v2;
|
|
}
|
|
|
|
template<>
|
|
float trilerp(float v0, float v1, float v2, float3 barycentrics)
|
|
{
|
|
return dot(float3(v0, v1, v2), barycentrics);
|
|
}
|
|
|
|
// Interleaved Gradient Noise by Jorge Jimenez
|
|
// from "Next Generation Post Processing in Call of Duty: Advanced Warfare"
|
|
float InterleavedGradientNoise(float2 uv)
|
|
{
|
|
float3 magic = float3(0.06711056, 0.00583715, 52.9829189);
|
|
return frac(magic.z * frac(dot(uv, magic.xy)));
|
|
}
|
|
|
|
template<typename T>
|
|
bool IsValueInRange(T p, T min, T max)
|
|
{
|
|
return all(p >= min) && all(p <= max);
|
|
}
|
|
|
|
template<typename T>
|
|
uint2 GetTextureSize(Texture2D<T> texture0)
|
|
{
|
|
uint2 size;
|
|
texture0.GetDimensions(size.x, size.y);
|
|
|
|
return size;
|
|
}
|
|
|
|
// by Sakib Saikia, https://sakibsaikia.github.io/graphics/2022/01/04/Nan-Checks-In-HLSL.html
|
|
bool IsNan(float x)
|
|
{
|
|
return (asuint(x) & 0x7FFFFFFFu) > 0x7F800000u;
|
|
}
|
|
|
|
bool isnan(float x)
|
|
{
|
|
return IsNan(x);
|
|
}
|
|
|
|
// from "Using Blue Noise For Raytraced Soft Shadows" by Alan Wolfe in "Ray Tracing Gems II"
|
|
// this turns the blue noise into a low discrepancy additive recurrence
|
|
float AnimateBlueNoise(float blueNoise, uint frameIndex)
|
|
{
|
|
return frac(blueNoise + float(frameIndex % 32) * 0.61803399);
|
|
}
|