cnq3/code/renderer/shaders/crp/common.hlsli
myT a76dba5cfb raytracing soft shadows, normal smoothing, G-buffer viz
- brightness-corrected ImGUI drawing
- upgraded shader code to HLSL 2021
- vertex normals drawing
2024-02-06 23:15:31 +01:00

318 lines
8.3 KiB
HLSL

/*
===========================================================================
Copyright (C) 2023-2024 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// shared utilities
#pragma once
#include "../common/state_bits.h.hlsli"
#include "../common/blend.hlsli"
#define PI 3.1415926535897932384626433832795
#define PI_D2 (PI / 2.0)
#define PI_D4 (PI / 4.0)
#define PI_M2 (PI * 2.0)
float DegToRad(float deg)
{
return PI * (deg / 180.0);
}
float RadToDeg(float rad)
{
return 180.0 * (rad / PI);
}
float Brightness(float3 color)
{
float brightness = dot(color, float3(0.299, 0.587, 0.114));
return brightness;
}
float4 MakeGreyscale(float4 input, float amount)
{
float grey = dot(input.rgb, float3(0.299, 0.587, 0.114));
float4 result = lerp(input, float4(grey, grey, grey, input.a), amount);
return result;
}
/*
f = far clip plane distance
n = near clip plane distance
exp = exponential depth value (as stored in the Z-buffer)
2 * f * n B
linear(exp) = ----------------------- = -------
(f + n) - exp * (f - n) exp - A
f + n -2 * f * n
with A = ----- and B = ----------
f - n f - n
*/
float LinearDepth(float zwDepth, float A, float B)
{
return B / (zwDepth - A);
}
float4 FSTrianglePosFromVertexId(uint id)
{
return float4(
(float)(id / 2) * 4.0 - 1.0,
(float)(id % 2) * 4.0 - 1.0,
0.0,
1.0);
}
float2 FSTriangleTCFromVertexId(uint id)
{
return float2(
(float)(id / 2) * 2.0,
1.0 - (float)(id % 2) * 2.0);
}
uint PackColor(float4 c)
{
uint4 u = uint4(saturate(c) * 255.0);
uint r = u.r | (u.g << 8) | (u.b << 16) | (u.a << 24);
return r;
}
float4 UnpackColor(uint c)
{
uint4 u = uint4(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu, (c >> 24) & 0xFFu);
float4 r = float4(u) / 255.0;
return r;
}
float EaseInCubic(float x)
{
return x * x * x;
}
float EaseOutCubic(float x)
{
float y = 1.0 - x;
return 1.0 - y * y * y;
}
float EaseInOutCubic(float x)
{
if(x < 0.5)
{
return 4 * x * x * x;
}
float y = -2 * x + 2;
return 1 - 0.5 * y * y * y;
}
float EaseInQuad(float x)
{
return x * x;
}
float smoothstep01(float x)
{
return smoothstep(0.0, 1.0, x);
}
// Oct*: octahedron normal vector encoding
// original code from "A Survey of Efficient Representations for Independent Unit Vectors"
// further improved by Krzysztof Narkowicz and Rune Stubbe
float2 OctWrap(float2 v)
{
return (1.0 - abs(v.yx)) * select(v.xy >= 0.0, 1.0, -1.0);
}
float2 OctEncode(float3 n)
{
n /= (abs(n.x) + abs(n.y) + abs(n.z));
n.xy = n.z >= 0.0 ? n.xy : OctWrap(n.xy);
n.xy = n.xy * 0.5 + 0.5;
return n.xy;
}
float3 OctDecode(float2 f)
{
f = f * 2.0 - 1.0;
float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y));
float t = saturate(-n.z);
n.xy += select(n.xy >= 0.0, -t, t);
return normalize(n);
}
float3 GetPositionFromDepth(float2 tc01, float depthZW, matrix invMatrix)
{
float x = tc01.x * 2.0 - 1.0;
float y = (1.0 - tc01.y) * 2.0 - 1.0;
float4 position = mul(float4(x, y, depthZW, 1.0), invMatrix);
float3 result = position.xyz / position.w;
return result;
}
float3 TransformNormal(float3 normal, matrix transform)
{
return mul(transform, float4(normal, 0)).xyz;
}
float3 TransformPoint(float3 position, matrix transform)
{
float4 result = mul(transform, float4(position, 1));
return result.xyz / result.w;
}
float3 RandomColorFromUInt(uint id)
{
float r = frac(0.420 + 1.337 * id);
float g = frac(0.69 + 1.666 * id);
float b = frac(0.13 + 1.777 * id);
return float3(r, g, b);
}
float3 BiasPosition(float3 position, float3 normal)
{
float3 result = position + sign(normal) * abs(position * 0.0000002);
return result;
}
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
// Projects the specified position (point) onto the plane with the specified origin and normal.
float3 ProjectPointOnPlane(float3 position, float3 planeOrigin, float3 planeNormal)
{
return position - dot(position - planeOrigin, planeNormal) * planeNormal;
}
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
// Computes the shading position of the specified geometric position and vertex positions and
// normals. For a triangle with normals describing a convex surface, this point will be slightly
// above the surface. For a concave surface, the geometry position is used directly.
// NOTE: The difference between the shading position and geometry position is significant when
// casting shadow rays. If the geometric position is used, a triangle may fully shadow itself when
// it should be partly lit based on the shading normals; this is the "shadow terminator" problem.
float3 GetShadingPosition(
float3 geomPosition, float3 shadingNormal,
float3 positions[3], float3 normals[3], float3 barycentrics)
{
// Project the geometric position (inside the triangle) to the planes defined by the vertex
// positions and normals.
float3 p0 = ProjectPointOnPlane(geomPosition, positions[0], normals[0]);
float3 p1 = ProjectPointOnPlane(geomPosition, positions[1], normals[1]);
float3 p2 = ProjectPointOnPlane(geomPosition, positions[2], normals[2]);
// Interpolate the projected positions using the barycentric coordinates, which gives the
// shading position.
float3 shadingPosition = p0 * barycentrics.x + p1 * barycentrics.y + p2 * barycentrics.z;
// Return the shading position for a convex triangle, where the shading point is above the
// triangle based on the shading normal. Otherwise use the geometric position.
bool convex = dot(shadingPosition - geomPosition, shadingNormal) > 0.0;
float3 result = convex ? shadingPosition : BiasPosition(geomPosition, shadingNormal);
return result;
}
// based on "Hacking the Shadow Terminator" by Johannes Hanika in "Ray Tracing Gems II"
float3 GetShadingPositionV2(float3 geomPosition, float3 positions[3], float3 normals[3], float3 barycentrics)
{
float3 tmpu = geomPosition - positions[0];
float3 tmpv = geomPosition - positions[1];
float3 tmpw = geomPosition - positions[2];
float dotu = min(0.0, dot(tmpu, normals[0]));
float dotv = min(0.0, dot(tmpv, normals[1]));
float dotw = min(0.0, dot(tmpw, normals[2]));
tmpu -= dotu * normals[0];
tmpv -= dotv * normals[1];
tmpw -= dotw * normals[2];
float3 shadingPosition = geomPosition + 1.0 * (barycentrics.x * tmpu + barycentrics.y * tmpv + barycentrics.z * tmpw);
return shadingPosition;
}
template<typename T>
T trilerp(T v0, T v1, T v2, float3 barycentrics)
{
return
barycentrics.x * v0 +
barycentrics.y * v1 +
barycentrics.z * v2;
}
template<>
float trilerp(float v0, float v1, float v2, float3 barycentrics)
{
return dot(float3(v0, v1, v2), barycentrics);
}
// Interleaved Gradient Noise by Jorge Jimenez
// from "Next Generation Post Processing in Call of Duty: Advanced Warfare"
float InterleavedGradientNoise(float2 uv)
{
float3 magic = float3(0.06711056, 0.00583715, 52.9829189);
return frac(magic.z * frac(dot(uv, magic.xy)));
}
template<typename T>
bool IsValueInRange(T p, T min, T max)
{
return all(p >= min) && all(p <= max);
}
template<typename T>
uint2 GetTextureSize(Texture2D<T> texture0)
{
uint2 size;
texture0.GetDimensions(size.x, size.y);
return size;
}
// by Sakib Saikia, https://sakibsaikia.github.io/graphics/2022/01/04/Nan-Checks-In-HLSL.html
bool IsNan(float x)
{
return (asuint(x) & 0x7FFFFFFFu) > 0x7F800000u;
}
bool isnan(float x)
{
return IsNan(x);
}
// from "Using Blue Noise For Raytraced Soft Shadows" by Alan Wolfe in "Ray Tracing Gems II"
// this turns the blue noise into a low discrepancy additive recurrence
float AnimateBlueNoise(float blueNoise, uint frameIndex)
{
return frac(blueNoise + float(frameIndex % 32) * 0.61803399);
}