cnq3/code/renderer/tr_main.cpp

1308 lines
36 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_main.c -- main control flow for each frame
#include "tr_local.h"
trGlobals_t tr;
refimport_t ri;
const float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
static void R_LocalPointToWorld( const vec3_t local, vec3_t world )
{
world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0] + tr.orient.origin[0];
world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1] + tr.orient.origin[1];
world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2] + tr.orient.origin[2];
}
static void R_LocalNormalToWorld( const vec3_t local, vec3_t world )
{
world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0];
world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1];
world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2];
}
// returns CULL_IN, CULL_CLIP, or CULL_OUT
int R_CullLocalBox( const vec3_t bounds[2] )
{
int i, j;
vec3_t transformed[8];
float dists[8];
vec3_t v;
cplane_t *frust;
int anyBack;
int front, back;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// transform into world space
for (i = 0 ; i < 8 ; i++) {
v[0] = bounds[i&1][0];
v[1] = bounds[(i>>1)&1][1];
v[2] = bounds[(i>>2)&1][2];
VectorCopy( tr.orient.origin, transformed[i] );
VectorMA( transformed[i], v[0], tr.orient.axis[0], transformed[i] );
VectorMA( transformed[i], v[1], tr.orient.axis[1], transformed[i] );
VectorMA( transformed[i], v[2], tr.orient.axis[2], transformed[i] );
}
// check against frustum planes
anyBack = 0;
for (i = 0 ; i < 4 ; i++) {
frust = &tr.viewParms.frustum[i];
front = back = 0;
for (j = 0 ; j < 8 ; j++) {
dists[j] = DotProduct(transformed[j], frust->normal);
if ( dists[j] > frust->dist ) {
front = 1;
if ( back ) {
break; // a point is in front
}
} else {
back = 1;
}
}
if ( !front ) {
// all points were behind one of the planes
return CULL_OUT;
}
anyBack |= back;
}
if ( !anyBack ) {
return CULL_IN; // completely inside frustum
}
return CULL_CLIP; // partially clipped
}
int R_CullPointAndRadius( const vec3_t pt, float radius )
{
qbool mightBeClipped = qfalse;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// check against frustum planes
for (int i = 0; i < 4; ++i)
{
const cplane_t* frust = &tr.viewParms.frustum[i];
float dist = DotProduct( pt, frust->normal) - frust->dist;
if ( dist < -radius )
{
return CULL_OUT;
}
else if ( dist <= radius )
{
mightBeClipped = qtrue;
}
}
if ( mightBeClipped )
{
return CULL_CLIP;
}
return CULL_IN; // completely inside frustum
}
int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
{
vec3_t transformed;
R_LocalPointToWorld( pt, transformed );
return R_CullPointAndRadius( transformed, radius );
}
/*
==========================
R_TransformModelToClip
==========================
*/
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
vec4_t eye, vec4_t dst ) {
int i;
for ( i = 0 ; i < 4 ; i++ ) {
eye[i] =
src[0] * modelMatrix[ i + 0 * 4 ] +
src[1] * modelMatrix[ i + 1 * 4 ] +
src[2] * modelMatrix[ i + 2 * 4 ] +
1 * modelMatrix[ i + 3 * 4 ];
}
for ( i = 0 ; i < 4 ; i++ ) {
dst[i] =
eye[0] * projectionMatrix[ i + 0 * 4 ] +
eye[1] * projectionMatrix[ i + 1 * 4 ] +
eye[2] * projectionMatrix[ i + 2 * 4 ] +
eye[3] * projectionMatrix[ i + 3 * 4 ];
}
}
/*
==========================
R_TransformClipToWindow
==========================
*/
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
normalized[0] = clip[0] / clip[3];
normalized[1] = clip[1] / clip[3];
normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth;
window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight;
window[2] = normalized[2];
window[0] = (int) ( window[0] + 0.5 );
window[1] = (int) ( window[1] + 0.5 );
}
static void myGlMultMatrix( const float *a, const float *b, float *out )
{
int i, j;
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
out[ i * 4 + j ] =
a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
}
}
}
/*
=================
R_RotateForEntity
Generates an orientation for an entity and viewParms
Does NOT produce any GL calls
Called by both the front end and the back end
=================
*/
void R_RotateForEntity( const trRefEntity_t* ent, const viewParms_t* viewParms, orientationr_t* orient )
{
float glMatrix[16];
vec3_t delta;
float axisLength;
if ( ent->e.reType != RT_MODEL ) {
*orient = viewParms->world;
return;
}
VectorCopy( ent->e.origin, orient->origin );
VectorCopy( ent->e.axis[0], orient->axis[0] );
VectorCopy( ent->e.axis[1], orient->axis[1] );
VectorCopy( ent->e.axis[2], orient->axis[2] );
glMatrix[0] = orient->axis[0][0];
glMatrix[4] = orient->axis[1][0];
glMatrix[8] = orient->axis[2][0];
glMatrix[12] = orient->origin[0];
glMatrix[1] = orient->axis[0][1];
glMatrix[5] = orient->axis[1][1];
glMatrix[9] = orient->axis[2][1];
glMatrix[13] = orient->origin[1];
glMatrix[2] = orient->axis[0][2];
glMatrix[6] = orient->axis[1][2];
glMatrix[10] = orient->axis[2][2];
glMatrix[14] = orient->origin[2];
glMatrix[3] = 0;
glMatrix[7] = 0;
glMatrix[11] = 0;
glMatrix[15] = 1;
myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, orient->modelMatrix );
// calculate the viewer origin in the model's space
// needed for fog, specular, and environment mapping
VectorSubtract( viewParms->orient.origin, orient->origin, delta );
// compensate for scale in the axes if necessary
if ( ent->e.nonNormalizedAxes ) {
axisLength = VectorLength( ent->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0f / axisLength;
}
} else {
axisLength = 1.0f;
}
orient->viewOrigin[0] = DotProduct( delta, orient->axis[0] ) * axisLength;
orient->viewOrigin[1] = DotProduct( delta, orient->axis[1] ) * axisLength;
orient->viewOrigin[2] = DotProduct( delta, orient->axis[2] ) * axisLength;
}
// sets up the modelview matrix for a given viewParm
static void R_RotateForViewer()
{
float viewerMatrix[16];
vec3_t origin;
Com_Memset( &tr.orient, 0, sizeof(tr.orient) );
tr.orient.axis[0][0] = 1;
tr.orient.axis[1][1] = 1;
tr.orient.axis[2][2] = 1;
VectorCopy( tr.viewParms.orient.origin, tr.orient.viewOrigin );
// transform by the camera placement
VectorCopy( tr.viewParms.orient.origin, origin );
viewerMatrix[0] = tr.viewParms.orient.axis[0][0];
viewerMatrix[4] = tr.viewParms.orient.axis[0][1];
viewerMatrix[8] = tr.viewParms.orient.axis[0][2];
viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
viewerMatrix[1] = tr.viewParms.orient.axis[1][0];
viewerMatrix[5] = tr.viewParms.orient.axis[1][1];
viewerMatrix[9] = tr.viewParms.orient.axis[1][2];
viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
viewerMatrix[2] = tr.viewParms.orient.axis[2][0];
viewerMatrix[6] = tr.viewParms.orient.axis[2][1];
viewerMatrix[10] = tr.viewParms.orient.axis[2][2];
viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
viewerMatrix[3] = 0;
viewerMatrix[7] = 0;
viewerMatrix[11] = 0;
viewerMatrix[15] = 1;
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.orient.modelMatrix );
tr.viewParms.world = tr.orient;
}
static void SetFarClip()
{
// if not rendering the world (icons, menus, etc)
// set a 2k far clip plane
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
tr.viewParms.zFar = 2048;
return;
}
// set far clipping plane dynamically
float farthestCornerDistance = 0;
for (int i = 0; i < 8; ++i)
{
vec3_t v;
v[0] = (i & 1) ? tr.viewParms.visBounds[0][0] : tr.viewParms.visBounds[1][0];
v[1] = (i & 2) ? tr.viewParms.visBounds[0][1] : tr.viewParms.visBounds[1][1];
v[2] = (i & 4) ? tr.viewParms.visBounds[0][2] : tr.viewParms.visBounds[1][2];
float d = DistanceSquared( v, tr.viewParms.orient.origin );
if ( d > farthestCornerDistance )
{
farthestCornerDistance = d;
}
}
tr.viewParms.zFar = sqrt( farthestCornerDistance );
}
static void R_SetupProjection()
{
float xmin, xmax, ymin, ymax;
float width, height, depth;
float zNear, zFar;
// dynamically compute far clip plane distance
SetFarClip();
//
// set up projection matrix
//
zNear = 4.0f;
zFar = tr.viewParms.zFar;
ymax = zNear * tan( tr.refdef.fov_y * M_PI / 360.0f );
ymin = -ymax;
xmax = zNear * tan( tr.refdef.fov_x * M_PI / 360.0f );
xmin = -xmax;
width = xmax - xmin;
height = ymax - ymin;
depth = zFar - zNear;
tr.viewParms.projectionMatrix[0] = 2 * zNear / width;
tr.viewParms.projectionMatrix[4] = 0;
tr.viewParms.projectionMatrix[8] = ( xmax + xmin ) / width; // normally 0
tr.viewParms.projectionMatrix[12] = 0;
tr.viewParms.projectionMatrix[1] = 0;
tr.viewParms.projectionMatrix[5] = 2 * zNear / height;
tr.viewParms.projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
tr.viewParms.projectionMatrix[13] = 0;
tr.viewParms.projectionMatrix[2] = 0;
tr.viewParms.projectionMatrix[6] = 0;
tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth;
tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth;
tr.viewParms.projectionMatrix[3] = 0;
tr.viewParms.projectionMatrix[7] = 0;
tr.viewParms.projectionMatrix[11] = -1;
tr.viewParms.projectionMatrix[15] = 0;
}
// set up the culling frustum planes for the current view
static void R_SetupFrustum()
{
float ang, xs, xc;
ang = tr.viewParms.fovX / 180 * M_PI * 0.5f;
xs = sin( ang );
xc = cos( ang );
VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[0].normal );
VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[0].normal );
VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[1].normal );
VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[1].normal );
ang = tr.viewParms.fovY / 180 * M_PI * 0.5f;
xs = sin( ang );
xc = cos( ang );
VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[2].normal );
VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[2].normal );
VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[3].normal );
VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[3].normal );
for (int i = 0; i < 4; ++i) {
tr.viewParms.frustum[i].type = PLANE_NON_AXIAL;
tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.orient.origin, tr.viewParms.frustum[i].normal);
SetPlaneSignbits( &tr.viewParms.frustum[i] );
}
}
static void R_MirrorPoint( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out )
{
int i;
vec3_t local;
vec3_t transformed;
float d;
VectorSubtract( in, surface->origin, local );
VectorClear( transformed );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct( local, surface->axis[i] );
VectorMA( transformed, d, camera->axis[i], transformed );
}
VectorAdd( transformed, camera->origin, out );
}
static void R_MirrorVector( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out )
{
int i;
float d;
VectorClear( out );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct( in, surface->axis[i] );
VectorMA( out, d, camera->axis[i], out );
}
}
static void R_PlaneForSurface( const surfaceType_t* surfType, cplane_t* plane )
{
vec4_t plane4;
if (!surfType) {
Com_Memset( plane, 0, sizeof(*plane) );
plane->normal[0] = 1;
return;
}
switch (*surfType) {
case SF_FACE:
*plane = ((const srfSurfaceFace_t*)surfType)->plane;
return;
case SF_TRIANGLES: {
const srfTriangles_t* tri = (const srfTriangles_t*)surfType;
const srfVert_t* v1 = tri->verts + tri->indexes[0];
const srfVert_t* v2 = tri->verts + tri->indexes[1];
const srfVert_t* v3 = tri->verts + tri->indexes[2];
PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
} return;
case SF_POLY: {
const srfPoly_t* poly = (const srfPoly_t*)surfType;
PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
} return;
default:
Com_Memset( plane, 0, sizeof(*plane) );
plane->normal[0] = 1;
return;
}
}
/*
=================
R_GetPortalOrientation
entityNum is the entity that the portal surface is a part of, which may
be moving and rotating.
Returns qtrue if it should be mirrored
=================
*/
qbool R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
orientation_t *surface, orientation_t *camera,
vec3_t pvsOrigin, qbool *mirror ) {
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
vec3_t transformed;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != ENTITYNUM_WORLD ) {
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin );
} else {
plane = originalPlane;
}
VectorCopy( plane.normal, surface->axis[0] );
PerpendicularVector( surface->axis[1], surface->axis[0] );
CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// get the pvsOrigin from the entity
VectorCopy( e->e.oldorigin, pvsOrigin );
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] ) {
VectorScale( plane.normal, plane.dist, surface->origin );
VectorCopy( surface->origin, camera->origin );
VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
VectorCopy( surface->axis[1], camera->axis[1] );
VectorCopy( surface->axis[2], camera->axis[2] );
*mirror = qtrue;
return qtrue;
}
// project the origin onto the surface plane to get
// an origin point we can rotate around
d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
// now get the camera origin and orientation
VectorCopy( e->e.oldorigin, camera->origin );
AxisCopy( e->e.axis, camera->axis );
VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
// optionally rotate
if ( e->e.oldframe ) {
// if a speed is specified
if ( e->e.frame ) {
// continuous rotate
d = (tr.refdef.time/1000.0f) * e->e.frame;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
} else {
// bobbing rotate, with skinNum being the rotation offset
d = sin( tr.refdef.time * 0.003f );
d = e->e.skinNum + d * 4;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
}
else if ( e->e.skinNum ) {
d = e->e.skinNum;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
*mirror = qfalse;
return qtrue;
}
// if we didn't locate a portal entity, don't render anything.
// We don't want to just treat it as a mirror, because without a
// portal entity the server won't have communicated a proper entity set
// in the snapshot
// unfortunately, with local movement prediction it is easily possible
// to see a surface before the server has communicated the matching
// portal surface entity, so we don't want to print anything here...
//ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
return qfalse;
}
static qbool IsMirror( const drawSurf_t *drawSurf, int entityNum )
{
int i;
cplane_t originalPlane, plane;
float d;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != ENTITYNUM_WORLD )
{
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin );
}
else
{
plane = originalPlane;
}
// locate the portal entity closest to this plane.
// origin will be the origin of the portal,
// oldorigin will be the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
{
const trRefEntity_t* e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// if the entity is just a mirror, don't use as a camera point
return VectorCompare( e->e.origin, e->e.oldorigin );
}
return qfalse;
}
// determines if a surface is COMPLETELY offscreen
static qbool SurfIsOffscreen( const drawSurf_t* drawSurf )
{
float shortest = 100000000;
int entityNum;
int numTriangles;
const shader_t *shader;
int fogNum;
vec4_t clip, eye;
int i;
unsigned int pointAnd = (unsigned int)~0;
#ifdef USE_R_SMP
if ( glInfo.smpActive ) { // FIXME! we can't do RB_BeginSurface/RB_EndSurface stuff with smp!
return qfalse;
}
#endif
R_RotateForViewer();
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum );
RB_BeginSurface( shader, fogNum );
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
assert( tess.numVertexes < 128 );
for ( i = 0; i < tess.numVertexes; i++ )
{
int j;
unsigned int pointFlags = 0;
R_TransformModelToClip( tess.xyz[i], tr.orient.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
for ( j = 0; j < 3; j++ )
{
if ( clip[j] >= clip[3] )
{
pointFlags |= (1 << (j*2));
}
else if ( clip[j] <= -clip[3] )
{
pointFlags |= ( 1 << (j*2+1));
}
}
pointAnd &= pointFlags;
}
// trivially reject
if ( pointAnd )
{
return qtrue;
}
// determine if this surface is backfaced and also determine the distance
// to the nearest vertex so we can cull based on portal range. Culling
// based on vertex distance isn't 100% correct (we should be checking for
// range to the surface), but it's good enough for the types of portals
// we have in the game right now.
numTriangles = tess.numIndexes / 3;
for ( i = 0; i < tess.numIndexes; i += 3 )
{
vec3_t normal;
float dot;
float len;
VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.orient.origin, normal );
len = VectorLengthSquared( normal ); // lose the sqrt
if ( len < shortest )
{
shortest = len;
}
if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 )
{
numTriangles--;
}
}
if ( !numTriangles )
{
return qtrue;
}
// mirrors can early out at this point, since we don't do a fade over distance
// with them (although we could)
if ( IsMirror( drawSurf, entityNum ) )
{
return qfalse;
}
if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) )
{
return qtrue;
}
return qfalse;
}
// returns true if another view has been rendered
static qbool R_MirrorViewBySurface( drawSurf_t* drawSurf, int entityNum )
{
viewParms_t newParms;
viewParms_t oldParms;
orientation_t surface, camera;
// don't recursively mirror
if (tr.viewParms.isPortal) {
ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
return qfalse;
}
// r_fastsky's "mindless" blit over the entire screen will destroy portal views
if ( r_fastsky->integer || r_noportals->integer ) {
return qfalse;
}
// trivially reject portal/mirror
if ( SurfIsOffscreen( drawSurf ) ) {
return qfalse;
}
// save old viewParms so we can return to it after the mirror view
oldParms = tr.viewParms;
newParms = tr.viewParms;
newParms.isPortal = qtrue;
if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
newParms.pvsOrigin, &newParms.isMirror ) ) {
return qfalse; // bad portal, no portalentity
}
R_MirrorPoint( oldParms.orient.origin, &surface, &camera, newParms.orient.origin );
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
R_MirrorVector( oldParms.orient.axis[0], &surface, &camera, newParms.orient.axis[0] );
R_MirrorVector( oldParms.orient.axis[1], &surface, &camera, newParms.orient.axis[1] );
R_MirrorVector( oldParms.orient.axis[2], &surface, &camera, newParms.orient.axis[2] );
// OPTIMIZE: restrict the viewport on the mirrored view
// render the mirror view
R_RenderView( &newParms );
tr.viewParms = oldParms;
return qtrue;
}
// see if a sprite is inside a fog volume
static int R_SpriteFogNum( const trRefEntity_t* ent )
{
int i, j;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
const fog_t* fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) {
break;
}
if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
==========================================================================================
DRAWSURF SORTING
==========================================================================================
*/
/*
===============
R_Radix
===============
*/
static ID_INLINE void R_Radix( int keyByte, int size, drawSurf_t *source, drawSurf_t *dest )
{
int count[ 256 ] = { 0 };
int index[ 256 ];
int i;
unsigned char *sortKey = NULL;
unsigned char *end = NULL;
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte;
end = sortKey + ( size * sizeof( drawSurf_t ) );
for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
++count[ *sortKey ];
index[ 0 ] = 0;
for( i = 1; i < 256; ++i )
index[ i ] = index[ i - 1 ] + count[ i - 1 ];
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte;
for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
dest[ index[ *sortKey ]++ ] = source[ i ];
}
/*
===============
R_RadixSort
Radix sort with 4 byte size buckets
===============
*/
static void R_RadixSort( drawSurf_t *source, int size )
{
static drawSurf_t scratch[ MAX_DRAWSURFS ];
#ifdef Q3_LITTLE_ENDIAN
R_Radix( 0, size, source, scratch );
R_Radix( 1, size, scratch, source );
R_Radix( 2, size, source, scratch );
R_Radix( 3, size, scratch, source );
#else
R_Radix( 3, size, source, scratch );
R_Radix( 2, size, scratch, source );
R_Radix( 1, size, source, scratch );
R_Radix( 0, size, scratch, source );
#endif //Q3_LITTLE_ENDIAN
}
// Philip Erdelsky gets all the credit for this one...
static void R_SortLitsurfs( dlight_t* dl )
{
struct litSurf_tape {
litSurf_t *first, *last;
unsigned count;
} tape[4];
// distribute the records alternately to tape[0] and tape[1]
tape[0].count = tape[1].count = 0;
tape[0].first = tape[1].first = NULL;
int base = 0;
litSurf_t* p = dl->head;
while (p) {
litSurf_t* next = p->next;
p->next = tape[base].first;
tape[base].first = p;
tape[base].count++;
p = next;
base ^= 1;
}
// merge from the two active tapes into the two idle ones
// doubling the number of records and pingponging the tape sets as we go
unsigned block_size = 1;
for ( base = 0; tape[base+1].count; base ^= 2, block_size <<= 1 )
{
litSurf_tape* tape0 = tape + base;
litSurf_tape* tape1 = tape + base + 1;
int dest = base ^ 2;
tape[dest].count = tape[dest+1].count = 0;
for (; tape0->count; dest ^= 1)
{
litSurf_tape* output_tape = tape + dest;
unsigned n0, n1;
n0 = n1 = block_size;
while (1)
{
litSurf_tape* chosen_tape;
if (n0 == 0 || tape0->count == 0)
{
if (n1 == 0 || tape1->count == 0)
break;
chosen_tape = tape1;
n1--;
}
else if (n1 == 0 || tape1->count == 0)
{
chosen_tape = tape0;
n0--;
}
else if (tape0->first->sort > tape1->first->sort)
{
chosen_tape = tape1;
n1--;
}
else
{
chosen_tape = tape0;
n0--;
}
chosen_tape->count--;
p = chosen_tape->first;
chosen_tape->first = p->next;
if (output_tape->count == 0)
output_tape->first = p;
else
output_tape->last->next = p;
output_tape->last = p;
output_tape->count++;
}
}
}
if (tape[base].count > 1)
tape[base].last->next = NULL;
dl->head = tape[base].first;
}
///////////////////////////////////////////////////////////////
void R_AddDrawSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex )
{
// instead of checking for overflow, we just mask the index so it wraps around
int index = tr.refdef.numDrawSurfs++ & DRAWSURF_MASK;
// the sort data is packed into a single 32 bit value so it can be
// compared quickly during the qsorting process
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT);
tr.refdef.drawSurfs[index].surface = surface;
}
void R_AddLitSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex )
{
tr.pc[RF_LIT_SURFS]++;
int index = tr.refdef.numLitSurfs++ & DRAWSURF_MASK;
litSurf_t* litsurf = &tr.refdef.litSurfs[index];
litsurf->sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT);
litsurf->surface = surface;
if (!tr.light->head)
tr.light->head = litsurf;
if (tr.light->tail)
tr.light->tail->next = litsurf;
tr.light->tail = litsurf;
tr.light->tail->next = 0;
}
void R_DecomposeSort( unsigned sort, int *entityNum, const shader_t **shader, int *fogNum )
{
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ];
*entityNum = ( sort >> QSORT_ENTITYNUM_SHIFT ) & MAX_REFENTITIES;
}
static void R_SortDrawSurfs( int firstDrawSurf, int firstLitSurf )
{
int numDrawSurfs = tr.refdef.numDrawSurfs - firstDrawSurf;
drawSurf_t* drawSurfs = tr.refdef.drawSurfs + firstDrawSurf;
const shader_t* shader;
int fogNum;
int entityNum;
int i;
// it is possible for some views to not have any surfaces
if ( numDrawSurfs < 1 ) {
// we still need to add it for hyperspace cases
R_AddDrawSurfCmd( drawSurfs, 0 );
return;
}
// if we overflowed MAX_DRAWSURFS, the drawsurfs
// wrapped around in the buffer and we will be missing
// the first surfaces, not the last ones
if ( numDrawSurfs > MAX_DRAWSURFS ) {
numDrawSurfs = MAX_DRAWSURFS;
}
// sort the drawsurfs by sort type, then shader, then entity, etc
R_RadixSort( drawSurfs, numDrawSurfs );
// check for any pass through drawing, which
// may cause another view to be rendered first
for ( i = 0 ; i < numDrawSurfs ; i++ ) {
R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum );
if ( shader->sort > SS_PORTAL ) {
break;
}
// no shader should ever have this sort type
if ( shader->sort == SS_BAD ) {
ri.Error( ERR_DROP, "Shader '%s' with sort == SS_BAD", shader->name );
}
// if the mirror was completely clipped away, we may need to check another surface
if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
// this is a debug option to see exactly what is being mirrored
if ( r_portalOnly->integer ) {
return;
}
break; // only one mirror view at a time
}
}
// all the lit surfaces are in a single queue
// but each light's surfaces are sorted within its subsection
for ( i = 0; i < tr.refdef.num_dlights; ++i ) {
dlight_t* dl = &tr.refdef.dlights[i];
if (dl->head) {
R_SortLitsurfs( dl );
}
}
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
}
// entities that will have procedurally generated surfaces will just
// point at this for their sorting surface
static const surfaceType_t entitySurface = SF_ENTITY;
static void R_AddEntitySurfaces()
{
trRefEntity_t* ent;
const shader_t* shader;
if ( !r_drawentities->integer )
return;
for (tr.currentEntityNum = 0; tr.currentEntityNum < tr.refdef.num_entities; ++tr.currentEntityNum) {
ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
// preshift the value we are going to OR into the drawsurf sort
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT;
//
// the weapon model must be handled special --
// we don't want the hacked weapon position showing in mirrors,
// because the true body position will already be drawn
//
if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal ) {
continue;
}
// simple generated models, like sprites and beams, are not culled
switch ( ent->e.reType ) {
case RT_PORTALSURFACE:
break; // don't draw anything
case RT_SPRITE:
case RT_LIGHTNING:
// self blood sprites, talk balloons, etc should not be drawn in the primary
// view. We can't just do this check for all entities, because md3
// entities may still want to cast shadows from them
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal ) {
continue;
}
shader = R_GetShaderByHandle( ent->e.customShader );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ) );
break;
case RT_MODEL:
// we must set up parts of tr.or for model culling
R_RotateForEntity( ent, &tr.viewParms, &tr.orient );
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
if (!tr.currentModel) {
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 );
} else {
switch ( tr.currentModel->type ) {
case MOD_MD3:
R_AddMD3Surfaces( ent );
break;
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;
case MOD_BAD: // null model axis
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal)
break;
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 );
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
break;
}
}
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
}
}
}
static void R_GenerateDrawSurfs()
{
R_AddWorldSurfaces();
R_AddPolygonSurfaces();
// set the projection matrix with the minimum zfar
// now that we have the world bounded
// this needs to be done before entities are added,
// because they use the projection matrix for lod calculation
R_SetupProjection();
R_AddEntitySurfaces();
}
static void R_DebugPolygon( int color, int numPoints, const float* points )
{
int i;
GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
// draw solid shade
qglColor3f( color&1, (color>>1)&1, (color>>2)&1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
// draw wireframe outline
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
qglDepthRange( 0, 0 );
qglColor3f( 1, 1, 1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
qglDepthRange( 0, 1 );
}
// visualization aid for movement clipping debugging
static void R_DebugGraphics()
{
if ( !r_debugSurface->integer )
return;
// the render thread can't make callbacks to the main thread
R_SyncRenderThread();
GL_Bind( tr.whiteImage);
GL_Cull( CT_FRONT_SIDED );
ri.CM_DrawDebugSurface( R_DebugPolygon );
}
int re_cameraMatrixTime;
// a view may be either the actual camera view, or a mirror / remote location
void R_RenderView( const viewParms_t* parms )
{
if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 )
return;
tr.viewCount++;
tr.viewParms = *parms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
int firstDrawSurf = tr.refdef.numDrawSurfs;
int firstLitSurf = tr.refdef.numLitSurfs;
// set viewParms.world
re_cameraMatrixTime = Sys_Milliseconds();
R_RotateForViewer();
R_SetupFrustum();
R_GenerateDrawSurfs();
R_SortDrawSurfs( firstDrawSurf, firstLitSurf );
// draw main system development information (surface outlines, etc)
R_DebugGraphics();
}