mirror of
https://bitbucket.org/CPMADevs/cnq3
synced 2025-02-22 03:41:21 +00:00
715 lines
17 KiB
HLSL
715 lines
17 KiB
HLSL
/*
|
|
===========================================================================
|
|
Copyright (C) 2023-2024 Gian 'myT' Schellenbaum
|
|
|
|
This file is part of Challenge Quake 3 (CNQ3).
|
|
|
|
Challenge Quake 3 is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Challenge Quake 3 is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
|
|
===========================================================================
|
|
*/
|
|
// shared utilities
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
#include "../common/state_bits.h.hlsli"
|
|
#include "../common/blend.hlsli"
|
|
|
|
|
|
#define PI 3.1415926535897932384626433832795
|
|
#define PI_D2 (PI / 2.0)
|
|
#define PI_D4 (PI / 4.0)
|
|
#define PI_M2 (PI * 2.0)
|
|
|
|
#define INT8_MIN 0x80
|
|
#define INT16_MIN 0x8000
|
|
#define INT32_MIN 0x80000000
|
|
#define INT64_MIN 0x8000000000000000
|
|
|
|
#define INT8_MAX 0x7F
|
|
#define INT16_MAX 0x7FFF
|
|
#define INT32_MAX 0x7FFFFFFF
|
|
#define INT64_MAX 0x7FFFFFFFFFFFFFFF
|
|
|
|
#define UINT8_MAX 0xFF
|
|
#define UINT16_MAX 0xFFFF
|
|
#define UINT32_MAX 0xFFFFFFFF
|
|
#define UINT64_MAX 0xFFFFFFFFFFFFFFFF
|
|
|
|
|
|
typedef RaytracingAccelerationStructure RTAS;
|
|
|
|
|
|
float DegToRad(float deg)
|
|
{
|
|
return PI * (deg / 180.0);
|
|
}
|
|
|
|
float RadToDeg(float rad)
|
|
{
|
|
return 180.0 * (rad / PI);
|
|
}
|
|
|
|
float Brightness(float3 color)
|
|
{
|
|
float brightness = dot(color, float3(0.299, 0.587, 0.114));
|
|
|
|
return brightness;
|
|
}
|
|
|
|
float4 MakeGreyscale(float4 input, float amount)
|
|
{
|
|
float grey = dot(input.rgb, float3(0.299, 0.587, 0.114));
|
|
float4 result = lerp(input, float4(grey, grey, grey, input.a), amount);
|
|
|
|
return result;
|
|
}
|
|
|
|
float LinearDepth(float zwDepth, float zNear, float zFar)
|
|
{
|
|
float n = zNear;
|
|
float f = zFar;
|
|
float zw = zwDepth;
|
|
float zl = (f * n) / (n + zw * (f - n));
|
|
|
|
return zl;
|
|
}
|
|
|
|
float LinearDepth(float zwDepth, float3 constants)
|
|
{
|
|
return constants.x / (constants.y + zwDepth * constants.z);
|
|
}
|
|
|
|
float PostProjectionDepth(float viewDepth, float zNear, float zFar)
|
|
{
|
|
float n = zNear;
|
|
float f = zFar;
|
|
float zv = viewDepth;
|
|
float zw = (n * (f - zv)) / ((f - n) * zv);
|
|
|
|
return zw;
|
|
}
|
|
|
|
float4 FSTrianglePosFromVertexId(uint id)
|
|
{
|
|
return float4(
|
|
(float)(id / 2) * 4.0 - 1.0,
|
|
(float)(id % 2) * 4.0 - 1.0,
|
|
0.0,
|
|
1.0);
|
|
}
|
|
|
|
float2 FSTriangleTCFromVertexId(uint id)
|
|
{
|
|
return float2(
|
|
(float)(id / 2) * 2.0,
|
|
1.0 - (float)(id % 2) * 2.0);
|
|
}
|
|
|
|
uint PackColor(float4 c)
|
|
{
|
|
uint4 u = uint4(saturate(c) * 255.0);
|
|
uint r = u.r | (u.g << 8) | (u.b << 16) | (u.a << 24);
|
|
|
|
return r;
|
|
}
|
|
|
|
float4 UnpackColor(uint c)
|
|
{
|
|
uint4 u = uint4(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu, (c >> 24) & 0xFFu);
|
|
float4 r = float4(u) / 255.0;
|
|
|
|
return r;
|
|
}
|
|
|
|
float EaseInCubic(float x)
|
|
{
|
|
return x * x * x;
|
|
}
|
|
|
|
float EaseOutCubic(float x)
|
|
{
|
|
float y = 1.0 - x;
|
|
|
|
return 1.0 - y * y * y;
|
|
}
|
|
|
|
float EaseInOutCubic(float x)
|
|
{
|
|
if(x < 0.5)
|
|
{
|
|
return 4 * x * x * x;
|
|
}
|
|
|
|
float y = -2 * x + 2;
|
|
|
|
return 1 - 0.5 * y * y * y;
|
|
}
|
|
|
|
float EaseInQuad(float x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
float EaseInExp(float x)
|
|
{
|
|
return x == 0.0 ? 0.0 : pow(2.0, 10.0 * x - 10.0);
|
|
}
|
|
|
|
float EaseOutExp(float x)
|
|
{
|
|
return x == 1.0 ? 1.0 : 1.0 - pow(2.0, -10.0 * x);
|
|
}
|
|
|
|
float smoothstep01(float x)
|
|
{
|
|
return smoothstep(0.0, 1.0, x);
|
|
}
|
|
|
|
// Oct*: octahedron normal vector encoding
|
|
// original code from "A Survey of Efficient Representations for Independent Unit Vectors"
|
|
// further improved by Krzysztof Narkowicz and Rune Stubbe
|
|
|
|
float2 OctWrap(float2 v)
|
|
{
|
|
return (1.0 - abs(v.yx)) * select(v.xy >= 0.0, 1.0, -1.0);
|
|
}
|
|
|
|
float2 OctEncode(float3 n)
|
|
{
|
|
n /= (abs(n.x) + abs(n.y) + abs(n.z));
|
|
n.xy = n.z >= 0.0 ? n.xy : OctWrap(n.xy);
|
|
n.xy = n.xy * 0.5 + 0.5;
|
|
|
|
return n.xy;
|
|
}
|
|
|
|
float3 OctDecode(float2 f)
|
|
{
|
|
f = f * 2.0 - 1.0;
|
|
float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y));
|
|
float t = saturate(-n.z);
|
|
n.xy += select(n.xy >= 0.0, -t, t);
|
|
|
|
return normalize(n);
|
|
}
|
|
|
|
float3 GetPositionFromDepth(float2 tc01, float depthZW, matrix invMatrix)
|
|
{
|
|
float x = tc01.x * 2.0 - 1.0;
|
|
float y = (1.0 - tc01.y) * 2.0 - 1.0;
|
|
float4 position = mul(float4(x, y, depthZW, 1.0), invMatrix);
|
|
float3 result = position.xyz / position.w;
|
|
|
|
return result;
|
|
}
|
|
|
|
float3 TransformNormal(float3 normal, matrix transform)
|
|
{
|
|
return mul(transform, float4(normal, 0)).xyz;
|
|
}
|
|
|
|
float3 TransformPoint(float3 position, matrix transform)
|
|
{
|
|
float4 result = mul(transform, float4(position, 1));
|
|
return result.xyz / result.w;
|
|
}
|
|
|
|
float3 RandomColorFromUInt(uint id)
|
|
{
|
|
float r = frac(0.420 + 1.337 * id);
|
|
float g = frac(0.69 + 1.666 * id);
|
|
float b = frac(0.13 + 1.777 * id);
|
|
|
|
return float3(r, g, b);
|
|
}
|
|
|
|
float3 BiasPosition(float3 position, float3 normal)
|
|
{
|
|
float3 result = position + sign(normal) * abs(position * 0.0000002);
|
|
|
|
return result;
|
|
}
|
|
|
|
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
|
|
// Projects the specified position (point) onto the plane with the specified origin and normal.
|
|
float3 ProjectPointOnPlane(float3 position, float3 planeOrigin, float3 planeNormal)
|
|
{
|
|
return position - dot(position - planeOrigin, planeNormal) * planeNormal;
|
|
}
|
|
|
|
// from Mauricio Vives, https://gist.github.com/pixnblox/5e64b0724c186313bc7b6ce096b08820
|
|
// Computes the shading position of the specified geometric position and vertex positions and
|
|
// normals. For a triangle with normals describing a convex surface, this point will be slightly
|
|
// above the surface. For a concave surface, the geometry position is used directly.
|
|
// NOTE: The difference between the shading position and geometry position is significant when
|
|
// casting shadow rays. If the geometric position is used, a triangle may fully shadow itself when
|
|
// it should be partly lit based on the shading normals; this is the "shadow terminator" problem.
|
|
float3 GetShadingPosition(
|
|
float3 geomPosition, float3 shadingNormal,
|
|
float3 positions[3], float3 normals[3], float3 barycentrics)
|
|
{
|
|
// Project the geometric position (inside the triangle) to the planes defined by the vertex
|
|
// positions and normals.
|
|
float3 p0 = ProjectPointOnPlane(geomPosition, positions[0], normals[0]);
|
|
float3 p1 = ProjectPointOnPlane(geomPosition, positions[1], normals[1]);
|
|
float3 p2 = ProjectPointOnPlane(geomPosition, positions[2], normals[2]);
|
|
|
|
// Interpolate the projected positions using the barycentric coordinates, which gives the
|
|
// shading position.
|
|
float3 shadingPosition = p0 * barycentrics.x + p1 * barycentrics.y + p2 * barycentrics.z;
|
|
|
|
// Return the shading position for a convex triangle, where the shading point is above the
|
|
// triangle based on the shading normal. Otherwise use the geometric position.
|
|
bool convex = dot(shadingPosition - geomPosition, shadingNormal) > 0.0;
|
|
float3 result = convex ? shadingPosition : BiasPosition(geomPosition, shadingNormal);
|
|
|
|
return result;
|
|
}
|
|
|
|
// based on "Hacking the Shadow Terminator" by Johannes Hanika in "Ray Tracing Gems II"
|
|
float3 GetShadingPositionV2(float3 geomPosition, float3 positions[3], float3 normals[3], float3 barycentrics)
|
|
{
|
|
float3 tmpu = geomPosition - positions[0];
|
|
float3 tmpv = geomPosition - positions[1];
|
|
float3 tmpw = geomPosition - positions[2];
|
|
float dotu = min(0.0, dot(tmpu, normals[0]));
|
|
float dotv = min(0.0, dot(tmpv, normals[1]));
|
|
float dotw = min(0.0, dot(tmpw, normals[2]));
|
|
tmpu -= dotu * normals[0];
|
|
tmpv -= dotv * normals[1];
|
|
tmpw -= dotw * normals[2];
|
|
float3 shadingPosition = geomPosition + 1.0 * (barycentrics.x * tmpu + barycentrics.y * tmpv + barycentrics.z * tmpw);
|
|
|
|
return shadingPosition;
|
|
}
|
|
|
|
template<typename T>
|
|
T trilerp(T v0, T v1, T v2, float3 barycentrics)
|
|
{
|
|
return
|
|
barycentrics.x * v0 +
|
|
barycentrics.y * v1 +
|
|
barycentrics.z * v2;
|
|
}
|
|
|
|
template<>
|
|
float trilerp(float v0, float v1, float v2, float3 barycentrics)
|
|
{
|
|
return dot(float3(v0, v1, v2), barycentrics);
|
|
}
|
|
|
|
// Interleaved Gradient Noise by Jorge Jimenez
|
|
// from "Next Generation Post Processing in Call of Duty: Advanced Warfare"
|
|
float InterleavedGradientNoise(float2 uv)
|
|
{
|
|
float3 magic = float3(0.06711056, 0.00583715, 52.9829189);
|
|
return frac(magic.z * frac(dot(uv, magic.xy)));
|
|
}
|
|
|
|
template<typename T>
|
|
bool IsInRange(T p, T min, T max)
|
|
{
|
|
return all(p >= min) && all(p <= max);
|
|
}
|
|
|
|
bool Is01(float2 p)
|
|
{
|
|
return IsInRange(p, float2(0, 0), float2(1, 1));
|
|
}
|
|
|
|
bool Is01(float3 p)
|
|
{
|
|
return IsInRange(p, float3(0, 0, 0), float3(1, 1, 1));
|
|
}
|
|
|
|
bool Is01(float4 p)
|
|
{
|
|
return IsInRange(p, float4(0, 0, 0, 0), float4(1, 1, 1, 1));
|
|
}
|
|
|
|
bool IsInTexture(int2 tc, int2 textureSize)
|
|
{
|
|
return all(tc >= int2(0, 0)) && all(tc < textureSize);
|
|
}
|
|
|
|
bool IsInTexture(int3 tc, int3 textureSize)
|
|
{
|
|
return all(tc >= int3(0, 0, 0)) && all(tc < textureSize);
|
|
}
|
|
|
|
template<typename T>
|
|
uint2 GetTextureSize(Texture2D<T> texture0)
|
|
{
|
|
uint2 size;
|
|
texture0.GetDimensions(size.x, size.y);
|
|
|
|
return size;
|
|
}
|
|
|
|
template<typename T>
|
|
uint2 GetTextureSize(RWTexture2D<T> texture0)
|
|
{
|
|
uint2 size;
|
|
texture0.GetDimensions(size.x, size.y);
|
|
|
|
return size;
|
|
}
|
|
|
|
template<typename T>
|
|
uint3 GetTextureSize(Texture3D<T> texture0)
|
|
{
|
|
uint3 size;
|
|
texture0.GetDimensions(size.x, size.y, size.z);
|
|
|
|
return size;
|
|
}
|
|
|
|
template<typename T>
|
|
uint3 GetTextureSize(RWTexture3D<T> texture0)
|
|
{
|
|
uint3 size;
|
|
texture0.GetDimensions(size.x, size.y, size.z);
|
|
|
|
return size;
|
|
}
|
|
|
|
// by Sakib Saikia, https://sakibsaikia.github.io/graphics/2022/01/04/Nan-Checks-In-HLSL.html
|
|
bool IsNan(float x)
|
|
{
|
|
return (asuint(x) & 0x7FFFFFFFu) > 0x7F800000u;
|
|
}
|
|
|
|
bool isnan(float x)
|
|
{
|
|
return IsNan(x);
|
|
}
|
|
|
|
// from "Using Blue Noise For Raytraced Soft Shadows" by Alan Wolfe in "Ray Tracing Gems II"
|
|
// this turns the blue noise into a low discrepancy additive recurrence
|
|
float AnimateBlueNoise(float blueNoise, uint frameIndex)
|
|
{
|
|
return frac(blueNoise + float(frameIndex % 32) * 0.61803399);
|
|
}
|
|
|
|
float2 NDCToTC(float2 ndc)
|
|
{
|
|
float2 tc = ndc * float2(0.5, -0.5) + float2(0.5, 0.5);
|
|
|
|
return tc;
|
|
}
|
|
|
|
float3 NDCToTC(float3 ndc)
|
|
{
|
|
float3 tc = ndc * float3(0.5, -0.5, 0.5) + float3(0.5, 0.5, 0.5);
|
|
|
|
return tc;
|
|
}
|
|
|
|
float2 TCToNDC(float2 tc)
|
|
{
|
|
float2 ndc = (2.0 * tc - 1.0) * float2(1, -1);
|
|
|
|
return ndc;
|
|
}
|
|
|
|
float3 TCToNDC(float3 tc)
|
|
{
|
|
float3 ndc = (2.0 * tc - 1.0) * float3(1, -1, 1);
|
|
|
|
return ndc;
|
|
}
|
|
|
|
// returns the longest vector
|
|
float2 vmax(float2 a, float2 b)
|
|
{
|
|
float2 result = dot(a, a) > dot(b, b) ? a : b;
|
|
|
|
return result;
|
|
}
|
|
|
|
uint PackHalf2(float2 input)
|
|
{
|
|
uint2 d = f32tof16(input);
|
|
uint result = d.x | (d.y << 16u);
|
|
|
|
return result;
|
|
}
|
|
|
|
float2 UnpackHalf2(uint input)
|
|
{
|
|
uint2 d = uint2(input & 0xFFFFu, input >> 16u);
|
|
float2 result = f16tof32(d);
|
|
|
|
return result;
|
|
}
|
|
|
|
float2 CartesianToPolar(float2 cartesian)
|
|
{
|
|
float radius = length(cartesian);
|
|
float angle = atan2(cartesian.y, cartesian.x);
|
|
float2 polar = float2(radius, angle);
|
|
|
|
return polar;
|
|
}
|
|
|
|
float2 PolarToCartesian(float2 polar)
|
|
{
|
|
float sinAngle, cosAngle;
|
|
sincos(polar.y, sinAngle, cosAngle);
|
|
float2 cartesian = polar.x * float2(cosAngle, sinAngle);
|
|
|
|
return cartesian;
|
|
}
|
|
|
|
// Beer-Lambert law
|
|
float Transmittance(float distance, float extinction)
|
|
{
|
|
float transmittance = exp(-distance * extinction);
|
|
|
|
return transmittance;
|
|
}
|
|
|
|
// phase function for Mie scattering
|
|
// g is in the range [-1;1]
|
|
// -1: backward scattering
|
|
// 0: isotropic
|
|
// 1: forward scattering
|
|
float HenyeyGreenstein(float cosTheta, float g)
|
|
{
|
|
float g2 = g * g;
|
|
float num = 1.0 - g2;
|
|
float denom = 4.0 * PI * pow(1.0 + g2 - 2.0 * g * cosTheta, 1.5);
|
|
float result = num / denom;
|
|
|
|
return result;
|
|
}
|
|
|
|
uint FlattenIndex(uint3 tileIndex, uint3 tileResolution)
|
|
{
|
|
return
|
|
tileIndex.x +
|
|
tileIndex.y * tileResolution.x +
|
|
tileIndex.z * tileResolution.x * tileResolution.y;
|
|
}
|
|
|
|
int FlattenIndex(int3 tileIndex, int3 tileResolution)
|
|
{
|
|
return
|
|
tileIndex.x +
|
|
tileIndex.y * tileResolution.x +
|
|
tileIndex.z * tileResolution.x * tileResolution.y;
|
|
}
|
|
|
|
uint3 UnflattenIndex(uint flatIndex, uint3 tileResolution)
|
|
{
|
|
uint h = tileResolution.y;
|
|
uint wh = tileResolution.x * h;
|
|
uint z = flatIndex / wh;
|
|
flatIndex -= z * wh;
|
|
uint y = flatIndex / h;
|
|
uint x = flatIndex - y * h;
|
|
uint3 result = uint3(x, y, z);
|
|
|
|
return result;
|
|
}
|
|
|
|
int3 UnflattenIndex(int flatIndex, int3 tileResolution)
|
|
{
|
|
int h = tileResolution.y;
|
|
int wh = tileResolution.x * h;
|
|
int z = flatIndex / wh;
|
|
flatIndex -= z * wh;
|
|
int y = flatIndex / h;
|
|
int x = flatIndex - y * h;
|
|
int3 result = int3(x, y, z);
|
|
|
|
return result;
|
|
}
|
|
|
|
void ClearBoundingBox(out int3 boxMin, out int3 boxMax)
|
|
{
|
|
boxMin = int3(INT32_MAX, INT32_MAX, INT32_MAX);
|
|
boxMax = int3(INT32_MIN, INT32_MIN, INT32_MIN);
|
|
}
|
|
|
|
template<typename T>
|
|
void ExpandBoundingBox(inout T boxMin, inout T boxMax, T newPoint)
|
|
{
|
|
boxMin = min(boxMin, newPoint);
|
|
boxMax = max(boxMax, newPoint);
|
|
}
|
|
|
|
// Credit: Riku Salminen
|
|
// dispatch the draw call with 36 indices
|
|
float3 CubeFromVertexID(uint vertexId)
|
|
{
|
|
int tri = int(vertexId) / 3;
|
|
int idx = int(vertexId) % 3;
|
|
int face = tri / 2;
|
|
int top = tri % 2;
|
|
|
|
int dir = face % 3;
|
|
int pos = face / 3;
|
|
|
|
int nz = dir >> 1;
|
|
int ny = dir & 1;
|
|
int nx = 1 ^ (ny | nz);
|
|
|
|
float3 d = float3(nx, ny, nz);
|
|
float flip = 1 - 2 * pos;
|
|
|
|
float3 n = flip * d;
|
|
float3 u = -d.yzx;
|
|
float3 v = flip * d.zxy;
|
|
|
|
float mirror = -1 + 2 * top;
|
|
float3 xyz = n + mirror * (1 - 2 * (idx & 1)) * u + mirror * (1 - 2 * (idx >> 1)) * v;
|
|
|
|
return xyz;
|
|
}
|
|
|
|
// dispatch the draw call with 6 indices
|
|
float2 QuadFromVertexID(uint vertexId)
|
|
{
|
|
float2 position;
|
|
position.x = (vertexId >= 1 && vertexId <= 3) ? 1.0 : -1.0;
|
|
position.y = (vertexId >= 2 && vertexId <= 4) ? -1.0 : 1.0;
|
|
|
|
return position;
|
|
}
|
|
|
|
float3 AABoxIndexToWorldSpace(int3 index, float3 centerPosition, float3 textureSize, float3 worldScale)
|
|
{
|
|
float3 position = centerPosition + worldScale * (float3(index)+float3(0.5, 0.5, 0.5) - 0.5 * textureSize);
|
|
|
|
return position;
|
|
}
|
|
|
|
float3 AABoxTCToWorldSpace(float3 tc, float3 centerPosition, float3 textureSize, float3 worldScale)
|
|
{
|
|
float3 position = centerPosition + worldScale * textureSize * (tc - float3(0.5, 0.5, 0.5));
|
|
|
|
return position;
|
|
}
|
|
|
|
float3 AABoxWorldSpaceToTC(float3 position, float3 centerPosition, float3 textureSize, float3 worldScale)
|
|
{
|
|
float3 boxSize = worldScale * textureSize;
|
|
float3 boxMin = centerPosition - 0.5 * boxSize;
|
|
float3 tc = (position - boxMin) / boxSize;
|
|
|
|
return tc;
|
|
}
|
|
|
|
int3 AABoxWorldSpaceToIndex(float3 position, float3 centerPosition, float3 textureSize, float3 worldScale)
|
|
{
|
|
float3 boxSize = worldScale * textureSize;
|
|
float3 boxMin = centerPosition - 0.5 * boxSize;
|
|
float3 indexF = (position - boxMin) / worldScale;
|
|
int3 index = int3(indexF);
|
|
|
|
return index;
|
|
}
|
|
|
|
float3 AABoxIndexToWorldSpace(int3 index, float3 centerPosition, float3 textureSize, float worldScale)
|
|
{
|
|
return AABoxIndexToWorldSpace(index, centerPosition, textureSize, worldScale.xxx);
|
|
}
|
|
|
|
float3 AABoxTCToWorldSpace(float3 tc, float3 centerPosition, float3 textureSize, float worldScale)
|
|
{
|
|
return AABoxTCToWorldSpace(tc, centerPosition, textureSize, worldScale.xxx);
|
|
}
|
|
|
|
float3 AABoxWorldSpaceToTC(float3 position, float3 centerPosition, float3 textureSize, float worldScale)
|
|
{
|
|
return AABoxWorldSpaceToTC(position, centerPosition, textureSize, worldScale.xxx);
|
|
}
|
|
|
|
int3 AABoxWorldSpaceToIndex(float3 position, float3 centerPosition, float3 textureSize, float worldScale)
|
|
{
|
|
return AABoxWorldSpaceToIndex(position, centerPosition, textureSize, worldScale.xxx);
|
|
}
|
|
|
|
template<typename T>
|
|
T min3(T v0, T v1, T v2)
|
|
{
|
|
return min(v0, min(v1, v2));
|
|
}
|
|
|
|
template<typename T>
|
|
T max3(T v0, T v1, T v2)
|
|
{
|
|
return max(v0, max(v1, v2));
|
|
}
|
|
|
|
template<typename T>
|
|
T min4(T v0, T v1, T v2, T v3)
|
|
{
|
|
return min(min(v0, v1), min(v2, v3));
|
|
}
|
|
|
|
template<typename T>
|
|
T max4(T v0, T v1, T v2, T v3)
|
|
{
|
|
return max(max(v0, v1), max(v2, v3));
|
|
}
|
|
|
|
// credit: Inigo Quilez
|
|
// returns t == -1 when nothing was hit
|
|
float RaytraceSphere(float3 rayOrigin, float3 rayDir, float3 spherePos, float sphereRadius)
|
|
{
|
|
float3 oc = rayOrigin - spherePos;
|
|
float b = dot(oc, rayDir);
|
|
float c = dot(oc, oc) - sphereRadius * sphereRadius;
|
|
float h = b * b - c;
|
|
if(h < 0.0)
|
|
{
|
|
return -1.0;
|
|
}
|
|
h = sqrt(h);
|
|
float t = -b - h;
|
|
|
|
return t;
|
|
}
|
|
|
|
float3 DirectionFromLongLat(float longitude01, float latitude01)
|
|
{
|
|
float lon = longitude01 * PI_M2;
|
|
float lat = latitude01 * PI_M2;
|
|
float sinLat, cosLat;
|
|
sincos(lat, sinLat, cosLat);
|
|
float sinLon, cosLon;
|
|
sincos(lon, sinLon, cosLon);
|
|
float3 direction = float3(cosLat * sinLon, sinLat * sinLon, cosLon);
|
|
|
|
return direction;
|
|
}
|
|
|
|
float3 AmbientColor(float4 payloadA, float4 payloadB, float3 normal, float3 fallbackColor)
|
|
{
|
|
float3 ambColor = payloadA.rgb;
|
|
float3 localColor = float3(payloadA.a, payloadB.rg);
|
|
float3 localDir = DirectionFromLongLat(payloadB.b, payloadB.a);
|
|
float localScale = dot(localDir, normal) * 0.5 + 0.5; // wraps around
|
|
float3 interpColor = ambColor + localColor * localScale;
|
|
float brightNew = Brightness(interpColor);
|
|
float brightFall = Brightness(fallbackColor);
|
|
float t = saturate(brightNew / max(brightFall, 0.001));
|
|
float3 color = lerp(fallbackColor, interpColor, t);
|
|
|
|
return color;
|
|
}
|