cnq3/code/renderer/tr_shade.cpp

492 lines
13 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade.c
#include "tr_local.h"
/*
THIS ENTIRE FILE IS BACK END
This file deals with applying shaders to surface data in the tess struct.
*/
static void ID_INLINE R_DrawElements( int numIndexes, const glIndex_t* indexes )
{
qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexes );
}
// draw triangle outlines for debugging
static void DrawTris( const shaderCommands_t* input )
{
GL_Bind( tr.whiteImage );
qglColor3f( 1, 1, 1 );
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglDepthRange( 0, 0 );
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglVertexPointer( 3, GL_FLOAT, 16, input->xyz ); // padded for SIMD
qglLockArraysEXT( 0, input->numVertexes );
R_DrawElements( input->numIndexes, input->indexes );
qglUnlockArraysEXT();
qglDepthRange( 0, 1 );
}
// draw vertex normals for debugging
static void DrawNormals( const shaderCommands_t* input )
{
GL_Bind( tr.whiteImage );
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglDepthRange( 0, 0 );
qglColor3f( 0, 0, 1 );
qglBegin( GL_LINES );
for (int i = 0; i < input->numVertexes; ++i) {
vec3_t temp;
qglVertex3fv( input->xyz[i] );
VectorMA( input->xyz[i], 2, input->normal[i], temp );
qglVertex3fv( temp );
}
qglEnd();
qglDepthRange( 0, 1 );
}
///////////////////////////////////////////////////////////////
void R_BindAnimatedImage( const textureBundle_t* bundle )
{
if ( bundle->isVideoMap ) {
ri.CIN_RunCinematic(bundle->videoMapHandle);
ri.CIN_UploadCinematic(bundle->videoMapHandle);
return;
}
if ( bundle->numImageAnimations <= 1 ) {
GL_Bind( bundle->image[0] );
return;
}
// it is necessary to do this messy calc to make sure animations line up
// exactly with waveforms of the same frequency
double v = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE;
long long int index = v; //myftol( tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE );
index >>= FUNCTABLE_SHIFT;
if ( index < 0 ) // may happen with shader time offsets
index = 0;
index %= bundle->numImageAnimations;
GL_Bind( bundle->image[ index ] );
}
/*
=============================================================
SURFACE SHADERS
=============================================================
*/
shaderCommands_t tess;
// we must set some things up before beginning any tesselation
// because a surface may be forced to perform a RB_End due to overflow
void RB_BeginSurface( const shader_t* shader, int fogNum )
{
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.shader = shader;
tess.fogNum = fogNum;
tess.xstages = (const shaderStage_t**)shader->stages;
tess.siFunc = shader->siFunc;
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
if (tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime) {
tess.shaderTime = tess.shader->clampTime;
}
}
void RB_EndSurface()
{
shaderCommands_t* input = &tess;
if (!input->numIndexes)
return;
if (input->indexes[SHADER_MAX_INDEXES-1] != 0) {
ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit" );
}
if (input->xyz[SHADER_MAX_VERTEXES-1][0] != 0) {
ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit" );
}
// for debugging of sort order issues, stop rendering after a given sort value
if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort ) {
return;
}
// update performance counters
if (tess.pass == shaderCommands_t::TP_LIGHT) {
backEnd.pc[RB_LIT_BATCHES]++;
backEnd.pc[RB_LIT_VERTICES] += tess.numVertexes;
backEnd.pc[RB_LIT_INDICES] += tess.numIndexes;
} else {
backEnd.pc[RB_BATCHES]++;
backEnd.pc[RB_VERTICES] += tess.numVertexes;
backEnd.pc[RB_INDICES] += tess.numIndexes;
}
// call off to shader specific tess end function
tess.siFunc();
// draw debugging stuff
if (!backEnd.projection2D && (tess.pass == shaderCommands_t::TP_BASE)) {
if (r_showtris->integer) DrawTris( input );
if (r_shownormals->integer) DrawNormals( input );
}
// clear shader so we can tell we don't have any unclosed surfaces
tess.numIndexes = 0;
}
///////////////////////////////////////////////////////////////
// blend a fog texture on top of everything else
void RB_FogPass()
{
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] );
const fog_t* fog = tr.world->fogs + tess.fogNum;
for (int i = 0; i < tess.numVertexes; ++i ) {
*(int*)&tess.svars.colors[i] = fog->colorInt;
}
RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] );
GL_Bind( tr.fogImage );
if ( tess.shader->fogPass == FP_EQUAL ) {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
} else {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
}
R_DrawElements( tess.numIndexes, tess.indexes );
}
void R_ComputeColors( const shaderStage_t* pStage, stageVars_t& svars )
{
int i;
//
// rgbGen
//
switch ( pStage->rgbGen )
{
case CGEN_IDENTITY:
Com_Memset( svars.colors, 0xff, tess.numVertexes * 4 );
break;
default:
case CGEN_IDENTITY_LIGHTING:
Com_Memset( svars.colors, tr.identityLightByte, tess.numVertexes * 4 );
break;
case CGEN_LIGHTING_DIFFUSE:
RB_CalcDiffuseColor( ( unsigned char * ) svars.colors );
break;
case CGEN_CONST:
for (i = 0; i < tess.numVertexes; i++) {
*(int *)svars.colors[i] = *(int *)pStage->constantColor;
}
break;
case CGEN_VERTEX:
if ( tr.identityLight == 1 )
{
Com_Memcpy( svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight;
svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight;
svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight;
svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case CGEN_EXACT_VERTEX:
Com_Memcpy( svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
break;
case CGEN_ONE_MINUS_VERTEX:
if ( tr.identityLight == 1 )
{
for ( i = 0; i < tess.numVertexes; i++ )
{
svars.colors[i][0] = 255 - tess.vertexColors[i][0];
svars.colors[i][1] = 255 - tess.vertexColors[i][1];
svars.colors[i][2] = 255 - tess.vertexColors[i][2];
}
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight;
svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight;
svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight;
}
}
break;
case CGEN_FOG:
{
const fog_t* fog = tr.world->fogs + tess.fogNum;
for ( i = 0; i < tess.numVertexes; i++ ) {
*(int*)&svars.colors[i] = fog->colorInt;
}
}
break;
case CGEN_WAVEFORM:
RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) svars.colors );
break;
case CGEN_ENTITY:
RB_CalcColorFromEntity( ( unsigned char * ) svars.colors );
break;
case CGEN_ONE_MINUS_ENTITY:
RB_CalcColorFromOneMinusEntity( ( unsigned char * ) svars.colors );
break;
}
//
// alphaGen
//
switch ( pStage->alphaGen )
{
case AGEN_SKIP:
break;
case AGEN_IDENTITY:
if ( pStage->rgbGen != CGEN_IDENTITY ) {
if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) ||
pStage->rgbGen != CGEN_VERTEX ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
svars.colors[i][3] = 0xff;
}
}
}
break;
case AGEN_CONST:
if ( pStage->rgbGen != CGEN_CONST ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
svars.colors[i][3] = pStage->constantColor[3];
}
}
break;
case AGEN_WAVEFORM:
RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) svars.colors );
break;
case AGEN_LIGHTING_SPECULAR:
RB_CalcSpecularAlpha( ( unsigned char * ) svars.colors );
break;
case AGEN_ENTITY:
RB_CalcAlphaFromEntity( ( unsigned char * ) svars.colors );
break;
case AGEN_ONE_MINUS_ENTITY:
RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) svars.colors );
break;
case AGEN_VERTEX:
if ( pStage->rgbGen != CGEN_VERTEX ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case AGEN_ONE_MINUS_VERTEX:
for ( i = 0; i < tess.numVertexes; i++ )
{
svars.colors[i][3] = 255 - tess.vertexColors[i][3];
}
break;
case AGEN_PORTAL:
{
for ( i = 0; i < tess.numVertexes; i++ )
{
vec3_t v;
VectorSubtract( tess.xyz[i], backEnd.viewParms.orient.origin, v );
float len = VectorLength( v ) / tess.shader->portalRange;
svars.colors[i][3] = (byte)Com_Clamp( 0, 255, len * 255 );
}
}
break;
}
//
// fog adjustment for colors to fade out as fog increases
//
if ( tess.fogNum )
{
switch ( pStage->adjustColorsForFog )
{
case ACFF_MODULATE_RGB:
RB_CalcModulateColorsByFog( ( unsigned char * ) svars.colors );
break;
case ACFF_MODULATE_ALPHA:
RB_CalcModulateAlphasByFog( ( unsigned char * ) svars.colors );
break;
case ACFF_MODULATE_RGBA:
RB_CalcModulateRGBAsByFog( ( unsigned char * ) svars.colors );
break;
case ACFF_NONE:
break;
}
}
}
void R_ComputeTexCoords( const shaderStage_t* pStage, stageVars_t& svars )
{
int i;
// generate the base texture coordinates
switch ( pStage->tcGen )
{
case TCGEN_IDENTITY:
Com_Memset( svars.texcoords, 0, sizeof( float ) * 2 * tess.numVertexes );
break;
case TCGEN_TEXTURE:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
svars.texcoords[i][0] = tess.texCoords[i][0][0];
svars.texcoords[i][1] = tess.texCoords[i][0][1];
}
break;
case TCGEN_LIGHTMAP:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
svars.texcoords[i][0] = tess.texCoords[i][1][0];
svars.texcoords[i][1] = tess.texCoords[i][1][1];
}
break;
case TCGEN_VECTOR:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
svars.texcoords[i][0] = DotProduct( tess.xyz[i], pStage->tcGenVectors[0] );
svars.texcoords[i][1] = DotProduct( tess.xyz[i], pStage->tcGenVectors[1] );
}
break;
case TCGEN_FOG:
RB_CalcFogTexCoords( ( float * ) svars.texcoords );
break;
case TCGEN_ENVIRONMENT_MAPPED:
RB_CalcEnvironmentTexCoords( ( float * ) svars.texcoords );
break;
case TCGEN_BAD:
return;
}
// then alter for any tcmods
for ( i = 0; i < pStage->numTexMods; ++i ) {
switch ( pStage->texMods[i].type )
{
case TMOD_NONE:
i = TR_MAX_TEXMODS; // break out of for loop
break;
case TMOD_TURBULENT:
RB_CalcTurbulentTexCoords( &pStage->texMods[i].wave, (float*)svars.texcoords );
break;
case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float*)svars.texcoords );
break;
case TMOD_SCROLL:
RB_CalcScrollTexCoords( pStage->texMods[i].scroll, (float*)svars.texcoords );
break;
case TMOD_SCALE:
RB_CalcScaleTexCoords( pStage->texMods[i].scale, (float*)svars.texcoords );
break;
case TMOD_STRETCH:
RB_CalcStretchTexCoords( &pStage->texMods[i].wave, (float*)svars.texcoords );
break;
case TMOD_TRANSFORM:
RB_CalcTransformTexCoords( &pStage->texMods[i], (float*)svars.texcoords );
break;
case TMOD_ROTATE:
RB_CalcRotateTexCoords( pStage->texMods[i].rotateSpeed, (float*)svars.texcoords );
break;
default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'\n", pStage->texMods[i].type, tess.shader->name );
break;
}
}
// fix up uncorrected lightmap texture coordinates
if ( pStage->type == ST_LIGHTMAP && pStage->tcGen != TCGEN_LIGHTMAP )
{
const shader_t* const shader = tess.shader;
for ( int i = 0; i < tess.numVertexes; ++i )
{
svars.texcoords[i][0] = svars.texcoords[i][0] * shader->lmScale[0] + shader->lmBias[0];
svars.texcoords[i][1] = svars.texcoords[i][1] * shader->lmScale[1] + shader->lmBias[1];
}
}
}