cnq3/code/renderer/shaders/crp/transp_resolve.hlsl
myT 7c217a313d fixed several OIT issues
- all: fixed depth test (yet another reverse Z pitfall...)
- VL: fixed output color mismatch when a low-impact fragment is added
- VL: fixed next closer fragment search ignoring the depth test
2024-05-03 01:17:11 +02:00

369 lines
11 KiB
HLSL

/*
===========================================================================
Copyright (C) 2023-2024 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// reads per-pixel fragment linked lists into arrays, sorts them and composites them
/*
OIT integration with volumetric lighting
Each texel has the final accumulated in-scattering (RGB) and transmittance (A)
from the near clip plane to the current voxel's depth.
The in-scattered light and transmittance values for any given depth range are therefore:
inScattering = farScatter - nearScatter
transmittance = farTrans / nearTrans
Definitions:
B : opaque/background surface color
C : color accumulator
D : color accumulator #2
T : transmittance from near plane to opaque surface
S : in-scattered light from near plane to opaque surface
T': transmittance from near plane to fragment
S': in-scattered light from near plane to fragment
If we use a single color accumulator C and apply transmittance T and in-scattering S post-blend,
we run the following logic for the opaque surface and every fragment:
C = Blend(C, ...)
C = CT + S
Doing this creates artifacts along the geometric edges of explosions (additive blend, black borders). But why?
Suppose we have no fragment, the final color F is therefore:
F = BT + S
What if we add a single fragment that contributes nothing (e.g. black and additive blended)?
C = BT/T' + S - S'
C = Blend(C, ...) // doesn't change C
F = (BT/T' + S - S') * T'/1 + S' - 0
F = BT + ST' - S'T' + S'
It's mismatched: we get (ST' - S'T' + S') instead of (S).
Let's try a separate color accumulator D just for the in-scattered light like so:
C = Blend(C, ...)
C = CT
D = D + S
F = C + D
No fragment case:
F = C + D == BT + S
Single useless fragment case:
C = BT/T'
D = S - S'
C = Blend(C, ...) // doesn't change C
C = CT'/1 == BT/T' * T'/1 == BT
D = D + S' - 0 == S - S' + S' - 0 == S
F = C + D == BT + S
Now it matches perfectly.
*/
#include "common.hlsli"
#include "fullscreen.hlsli"
#include "oit.h.hlsli"
#include "scene_view.h.hlsli"
#include "../common/state_bits.h.hlsli"
cbuffer RootConstants
{
float2 scissorRectMin;
float2 scissorRectMax;
uint renderTargetTexture;
uint shaderIndexBuffer;
uint indexTexture;
uint fragmentBuffer;
uint centerPixel; // y: 16 - x: 16
uint scatterTextureIndex;
uint scatterSamplerIndex;
};
uint GetShaderStage(uint stateBits)
{
return (stateBits & GLS_STAGEINDEX_BITS) >> GLS_STAGEINDEX_SHIFT;
}
bool IsBehind(float depthA, float depthB, uint stageA, uint stageB)
{
if(depthA > depthB)
{
return true;
}
if(depthA == depthB && stageA < stageB)
{
return true;
}
return false;
}
// from NVIDIA's 2007 "Soft Particles" whitepaper by Tristan Lorach
float Contrast(float d, float power)
{
bool aboveHalf = d > 0.5;
float base = saturate(2.0 * (aboveHalf ? (1.0 - d) : d));
float r = 0.5 * pow(base, power);
return aboveHalf ? (1.0 - r) : r;
}
float GetBitAsFloat(uint bits, uint bitIndex)
{
return (bits & (1u << bitIndex)) ? 1.0 : 0.0;
}
float4 DepthFadeFragmentColor(float4 color, OIT_Fragment fragment, float opaqueViewDepth)
{
if(((fragment.depthFadeScaleBiasPO >> 8) & 1) == 0)
{
return color;
}
#define BIT(Index) GetBitAsFloat(fragment.depthFadeScaleBiasPO, Index)
float4 dst = color;
float2 distOffset = UnpackHalf2(fragment.depthFadeDistOffset);
float4 fadeColorScale = float4(BIT(0), BIT(1), BIT(2), BIT(3));
float4 fadeColorBias = float4(BIT(4), BIT(5), BIT(6), BIT(7));
float depthS = opaqueViewDepth; // stored depth, linear
float depthP = fragment.depth - distOffset.y; // fragment depth, linear
float fadeScale = Contrast((depthS - depthP) * distOffset.x, 2.0);
dst = lerp(dst * fadeColorScale + fadeColorBias, dst, fadeScale);
#undef BIT
return dst;
}
float3 BlendInScatteredLight(float4 srcColor, float3 dstColor, uint blendBits)
{
// source blend must not double source contributions, so we can't call BlendSource
uint srcBlend = blendBits & GLS_SRCBLEND_BITS;
float3 srcContrib = float3(0, 0, 0);
if(srcBlend == GLS_SRCBLEND_DST_COLOR)
{
srcContrib = dstColor * (float3(1, 1, 1) - dstColor);
}
else if(srcBlend == GLS_SRCBLEND_ONE_MINUS_DST_COLOR)
{
srcContrib = dstColor * (float3(1, 1, 1) - dstColor);
}
uint dstBlend = blendBits & GLS_DSTBLEND_BITS;
float3 dstContrib = BlendDest(srcColor, float4(dstColor, 1), dstBlend).rgb;
float3 result = srcContrib + dstContrib;
return result;
}
struct OIT_Resolve
{
bool InitScissorRect(VOut input)
{
renderTarget = ResourceDescriptorHeap[renderTargetTexture];
tcPx = int3(input.position.xy, 0);
opaqueColor = renderTarget.Load(tcPx);
if(any(input.position.xy < scissorRectMin) ||
any(input.position.xy > scissorRectMax))
{
return true;
}
return false;
}
void Init(VOut input)
{
scene = GetSceneView();
#if defined(VOLUMETRIC_LIGHT)
scatterTexture = ResourceDescriptorHeap[scatterTextureIndex];
scatterSampler = SamplerDescriptorHeap[scatterSamplerIndex];
#endif
RWTexture2D<uint> index = ResourceDescriptorHeap[indexTexture];
RWStructuredBuffer<OIT_Fragment> fragments = ResourceDescriptorHeap[fragmentBuffer];
Texture2D depthTex = ResourceDescriptorHeap[scene.depthTextureIndex];
uint fragmentIndex = index[tcPx.xy];
fragmentCount = 0;
float storedDepthZW = depthTex.Load(tcPx).x; // stored depth, z/w
opaqueViewDepth = scene.LinearDepth(storedDepthZW);
// grab this pixel's fragments
while(fragmentIndex != 0 && fragmentCount < OIT_MAX_FRAGMENTS_PER_PIXEL)
{
sorted[fragmentCount] = fragments[fragmentIndex];
fragmentIndex = sorted[fragmentCount].next;
++fragmentCount;
}
// sort the fragments using an insertion sort
for(uint i = 1; i < fragmentCount; ++i)
{
OIT_Fragment insert = sorted[i];
uint stage = GetShaderStage(insert.stateBits);
uint j = i;
while(j > 0 && IsBehind(insert.depth, sorted[j - 1].depth, stage, GetShaderStage(sorted[j - 1].stateBits)))
{
sorted[j] = sorted[j - 1];
--j;
}
sorted[j] = insert;
}
}
float4 Resolve(VOut input)
{
float4 color = saturate(opaqueColor);
#if defined(VOLUMETRIC_LIGHT)
float3 inScatterAccum = float3(0, 0, 0);
// initialize volume traversal
float3 volumeSize = GetTextureSize(scatterTexture);
float opaqueFroxelDepth01 = scene.FroxelViewDepthToZ01(opaqueViewDepth, volumeSize.z);
// @TODO: do the depth bias only when global fog is enabled or a CVar is set
opaqueFroxelDepth01 = max(opaqueFroxelDepth01 - 1.0 / volumeSize.z, 0.0);
float3 scatterTC = float3(input.texCoords, opaqueFroxelDepth01);
float4 scatterData = scatterTexture.SampleLevel(scatterSampler, scatterTC, 0);
{
float4 closerScatterData = FindCloserScatterData(0, -1.0, input, volumeSize);
float3 inScattering = scatterData.rgb - closerScatterData.rgb;
float transmittance = min(scatterData.a / max(closerScatterData.a, 0.000001), 1.0);
inScatterAccum = inScattering;
color.rgb = color.rgb * transmittance;
scatterData = closerScatterData;
}
#endif
// blend the results
lastFragmentIndex = -1;
float dstDepth = -1.0;
for(uint i = 0; i < fragmentCount; ++i)
{
OIT_Fragment frag = sorted[i];
uint stateBits = frag.stateBits;
float fragDepth = frag.depth;
if((stateBits & (GLS_DEPTHFUNC_EQUAL | GLS_DEPTHTEST_DISABLE)) == GLS_DEPTHFUNC_EQUAL &&
fragDepth != dstDepth)
{
continue;
}
float4 fragColor = UnpackColor(frag.color);
float4 prevColor = color;
fragColor = DepthFadeFragmentColor(fragColor, frag, opaqueViewDepth);
color = Blend(fragColor, color, stateBits);
color = saturate(color);
if((stateBits & GLS_DEPTHMASK_TRUE) != 0u &&
fragDepth != dstDepth)
{
dstDepth = fragDepth;
}
// we have to not include the alpha channel in this test for it to be correct
if(any(color.rgb != prevColor.rgb))
{
lastFragmentIndex = (int)i;
}
#if defined(VOLUMETRIC_LIGHT)
float4 closerScatterData = FindCloserScatterData(i + 1, dstDepth, input, volumeSize);
float3 inScattering = scatterData.rgb - closerScatterData.rgb;
float transmittance = min(scatterData.a / max(closerScatterData.a, 0.000001), 1.0);
inScatterAccum = inScattering + BlendInScatteredLight(fragColor, inScatterAccum, stateBits & GLS_BLEND_BITS);
color.rgb *= transmittance;
scatterData = closerScatterData;
#endif
}
#if defined(VOLUMETRIC_LIGHT)
color.rgb += inScatterAccum;
#endif
return color;
}
#if defined(VOLUMETRIC_LIGHT)
float4 FindCloserScatterData(uint startIndex, float dstDepth, VOut input, float3 volumeSize)
{
float4 closerScatterData = float4(0, 0, 0, 1);
for(uint j = startIndex; j < fragmentCount; ++j)
{
OIT_Fragment frag = sorted[j];
uint stateBits = frag.stateBits;
float fragDepth = frag.depth;
if((stateBits & (GLS_DEPTHFUNC_EQUAL | GLS_DEPTHTEST_DISABLE)) == GLS_DEPTHFUNC_EQUAL &&
fragDepth != dstDepth)
{
continue;
}
float froxelDepth01 = scene.FroxelViewDepthToZ01(fragDepth, volumeSize.z);
float3 scatterTC = float3(input.texCoords, froxelDepth01);
closerScatterData = scatterTexture.SampleLevel(scatterSampler, scatterTC, 0);
break;
}
return closerScatterData;
}
#endif
void WriteShaderID(VOut input)
{
// write out the fragment shader ID of the closest visible fragment of the center pixel
if(lastFragmentIndex >= 0)
{
OIT_Fragment closest = sorted[lastFragmentIndex];
uint shaderTrace = closest.shaderTrace;
if(shaderTrace & 1)
{
uint2 fragmentCoords = uint2(input.position.xy);
uint2 centerCoords = uint2(centerPixel & 0xFFFF, centerPixel >> 16);
if(all(fragmentCoords == centerCoords))
{
RWByteAddressBuffer shaderIdBuf = ResourceDescriptorHeap[shaderIndexBuffer];
uint shaderIndex = shaderTrace >> 1;
shaderIdBuf.Store(0, shaderIndex);
}
}
}
}
SceneView scene;
Texture2D renderTarget;
int3 tcPx;
float4 opaqueColor;
OIT_Fragment sorted[OIT_MAX_FRAGMENTS_PER_PIXEL];
uint fragmentCount;
int lastFragmentIndex;
float opaqueViewDepth;
#if defined(VOLUMETRIC_LIGHT)
Texture3D<float4> scatterTexture;
SamplerState scatterSampler;
#endif
};
float4 ps(VOut input) : SV_Target
{
OIT_Resolve resolve;
if(resolve.InitScissorRect(input))
{
return resolve.opaqueColor;
}
resolve.Init(input);
float4 color = resolve.Resolve(input);
resolve.WriteShaderID(input);
return color;
}