/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_sky.c #include "tr_local.h" #define SKY_SUBDIVISIONS 8 #define HALF_SKY_SUBDIVISIONS (SKY_SUBDIVISIONS/2) static float s_cloudTexCoords[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2]; /* =================================================================================== POLYGON TO BOX SIDE PROJECTION =================================================================================== */ static vec2_t sky_mins_st[6], sky_maxs_st[6]; /* ================ AddSkyPolygon ================ */ static void AddSkyPolygon (int nump, vec3_t vecs) { int i,j; vec3_t v, av; float s, t, dv; int axis; float *vp; // s = [0]/[2], t = [1]/[2] static int vec_to_st[6][3] = { {-2,3,1}, {2,3,-1}, {1,3,2}, {-1,3,-2}, {-2,-1,3}, {-2,1,-3} // {-1,2,3}, // {1,2,-3} }; // decide which face it maps to VectorCopy (vec3_origin, v); for (i=0, vp=vecs ; i av[1] && av[0] > av[2]) { if (v[0] < 0) axis = 1; else axis = 0; } else if (av[1] > av[2] && av[1] > av[0]) { if (v[1] < 0) axis = 3; else axis = 2; } else { if (v[2] < 0) axis = 5; else axis = 4; } // project new texture coords for (i=0 ; i 0) dv = vecs[j - 1]; else dv = -vecs[-j - 1]; if (dv < 0.001) continue; // don't divide by zero j = vec_to_st[axis][0]; if (j < 0) s = -vecs[-j -1] / dv; else s = vecs[j-1] / dv; j = vec_to_st[axis][1]; if (j < 0) t = -vecs[-j -1] / dv; else t = vecs[j-1] / dv; if (sky_mins_st[axis][0] > s) sky_mins_st[axis][0] = s; if (sky_mins_st[axis][1] > t) sky_mins_st[axis][1] = t; if (sky_maxs_st[axis][0] < s) sky_maxs_st[axis][0] = s; if (sky_maxs_st[axis][1] < t) sky_maxs_st[axis][1] = t; } } #define ON_EPSILON 0.1f // point on plane side epsilon #define MAX_CLIP_VERTS 64 static const vec3_t sky_clip[6] = { { 1, 1, 0 }, // R { 1, -1, 0 }, // L { 0, -1, 1 }, // B { 0, 1, 1 }, // F { 1, 0, 1 }, // U { -1, 0, 1 } // D }; static void ClipSkyPolygon (int nump, vec3_t vecs, int stage) { const float* norm; float *v; qbool front, back; float d, e; float dists[MAX_CLIP_VERTS]; int sides[MAX_CLIP_VERTS]; vec3_t newv[2][MAX_CLIP_VERTS]; int newc[2]; int i, j; if (nump > MAX_CLIP_VERTS-2) ri.Error (ERR_DROP, "ClipSkyPolygon: MAX_CLIP_VERTS"); if (stage == 6) { // fully clipped, so draw it AddSkyPolygon (nump, vecs); return; } front = back = qfalse; norm = sky_clip[stage]; for (i=0, v = vecs ; i ON_EPSILON) { front = qtrue; sides[i] = SIDE_FRONT; } else if (d < -ON_EPSILON) { back = qtrue; sides[i] = SIDE_BACK; } else sides[i] = SIDE_ON; dists[i] = d; } if (!front || !back) { // not clipped ClipSkyPolygon (nump, vecs, stage+1); return; } // clip it sides[i] = sides[0]; dists[i] = dists[0]; VectorCopy (vecs, (vecs+(i*3)) ); newc[0] = newc[1] = 0; for (i=0, v = vecs ; inumIndexes; i += 3 ) { VectorSubtract( input->xyz[input->indexes[i+0]], backEnd.viewParms.orient.origin, p[0] ); VectorSubtract( input->xyz[input->indexes[i+1]], backEnd.viewParms.orient.origin, p[1] ); VectorSubtract( input->xyz[input->indexes[i+2]], backEnd.viewParms.orient.origin, p[2] ); ClipSkyPolygon( 3, p[0], 0 ); } } /* =================================================================================== CLOUD VERTEX GENERATION =================================================================================== */ static vec3_t s_skyPoints[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1]; static vec2_t s_skyTexCoords[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1]; // s, t range from -1 to 1 static void MakeSkyVec( float s, float t, int axis, vec2_t st, vec3_t xyz ) { // 1 = s, 2 = t, 3 = zfar static const int st_to_vec[6][3] = { { 3, -1, 2 }, { -3, 1, 2 }, { 1, 3, 2 }, { -1, -3, 2 }, { -2, -1, 3 }, // 0 degrees yaw, look straight up { 2, -1, -3 } // look straight down }; vec3_t b; float boxSize = backEnd.viewParms.zFar / 1.75; // div sqrt(3) b[0] = boxSize * s; b[1] = boxSize * t; b[2] = boxSize; for (int i = 0; i < 3; ++i) { int k = st_to_vec[axis][i]; xyz[i] = (k < 0) ? -b[-k - 1] : b[k - 1]; } // convert our -1:1 range (and inverted t) into GL TCs if ( st ) { st[0] = Com_Clamp( 0, 1, (s+1) * 0.5 ); st[1] = 1.0 - Com_Clamp( 0, 1, (t+1) * 0.5 ); } } static void CalcSkyBounds() { for (int i = 0; i < 6; ++i) { sky_mins_st[i][0] = floor( sky_mins_st[i][0] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS; sky_mins_st[i][1] = floor( sky_mins_st[i][1] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS; sky_maxs_st[i][0] = ceil( sky_maxs_st[i][0] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS; sky_maxs_st[i][1] = ceil( sky_maxs_st[i][1] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS; } } static void DrawSkySide( const image_t* image, const int mins[2], const int maxs[2] ) { int s, t; GL_Bind( image ); for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t < maxs[1]+HALF_SKY_SUBDIVISIONS; t++ ) { qglBegin( GL_TRIANGLE_STRIP ); for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ ) { qglTexCoord2fv( s_skyTexCoords[t][s] ); qglVertex3fv( s_skyPoints[t][s] ); qglTexCoord2fv( s_skyTexCoords[t+1][s] ); qglVertex3fv( s_skyPoints[t+1][s] ); } qglEnd(); } } static void DrawSkyBox( const shader_t* shader ) { // Com_Memset( s_skyTexCoords, 0, sizeof( s_skyTexCoords ) ); for (int i = 0; i < 6; ++i) { int sky_mins_subd[2], sky_maxs_subd[2]; if ( ( sky_mins_st[i][0] >= sky_maxs_st[i][0] ) || ( sky_mins_st[i][1] >= sky_maxs_st[i][1] ) ) { continue; } sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_mins_st[i][0] ); sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_mins_st[i][1] ); sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_maxs_st[i][0] ); sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_maxs_st[i][1] ); // // iterate through the subdivisions // for (int t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; ++t) { for (int s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; ++s) { MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS, ( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS, i, s_skyTexCoords[t][s], s_skyPoints[t][s] ); } } DrawSkySide( shader->sky.outerbox[i], sky_mins_subd, sky_maxs_subd ); } } static void FillCloudySkySide( const int mins[2], const int maxs[2], qbool addIndexes ) { int s, t; int vertexStart = tess.numVertexes; for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t <= maxs[1]+HALF_SKY_SUBDIVISIONS; t++ ) { for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ ) { VectorAdd( s_skyPoints[t][s], backEnd.viewParms.orient.origin, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = s_skyTexCoords[t][s][0]; tess.texCoords[tess.numVertexes][0][1] = s_skyTexCoords[t][s][1]; tess.numVertexes++; if ( tess.numVertexes >= SHADER_MAX_VERTEXES ) { ri.Error( ERR_DROP, "SHADER_MAX_VERTEXES hit in FillCloudySkySide()\n" ); } } } // only add indexes for one pass, otherwise it would draw multiple times for each pass if ( !addIndexes ) return; int tHeight = maxs[1] - mins[1] + 1; int sWidth = maxs[0] - mins[0] + 1; for ( t = 0; t < tHeight-1; t++ ) { for ( s = 0; s < sWidth-1; s++ ) { tess.indexes[tess.numIndexes] = vertexStart + s + t * ( sWidth ); tess.numIndexes++; tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth ); tess.numIndexes++; tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth ); tess.numIndexes++; tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth ); tess.numIndexes++; tess.indexes[tess.numIndexes] = vertexStart + s + 1 + ( t + 1 ) * ( sWidth ); tess.numIndexes++; tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth ); tess.numIndexes++; } } } static void FillCloudBox( const shader_t* shader, int stage ) { // skybox surfs are ordered RLBFUD, so don't draw clouds on the last one for (int i = 0; i < 5; ++i) { int s, t; int sky_mins_subd[2], sky_maxs_subd[2]; if ( ( sky_mins_st[i][0] >= sky_maxs_st[i][0] ) || ( sky_mins_st[i][1] >= sky_maxs_st[i][1] ) ) { //ri.Printf( PRINT_ALL, "clipped cloudside %i\n", i ); continue; } sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_mins_st[i][0] ); sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_mins_st[i][1] ); sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_maxs_st[i][0] ); sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS * Com_Clamp( -1, 1, sky_maxs_st[i][1] ); // // iterate through the subdivisions // for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ ) { for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ ) { MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS, ( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS, i, NULL, s_skyPoints[t][s] ); s_skyTexCoords[t][s][0] = s_cloudTexCoords[i][t][s][0]; s_skyTexCoords[t][s][1] = s_cloudTexCoords[i][t][s][1]; } } // only add indexes for first stage FillCloudySkySide( sky_mins_subd, sky_maxs_subd, (qbool)(stage == 0) ); } } static void R_BuildCloudData( shaderCommands_t* input ) { assert( input->shader->sort == SS_ENVIRONMENT ); // set up for drawing tess.numIndexes = 0; tess.numVertexes = 0; if (!input->shader->sky.cloudHeight) return; for (int i = 0; (i < MAX_SHADER_STAGES) && tess.xstages[i]; ++i) { FillCloudBox( input->shader, i ); } } // called when a sky shader is parsed void R_InitSkyTexCoords( float heightCloud ) { int i, s, t; float radiusWorld = 4096; float p; float sRad, tRad; vec3_t skyVec; vec3_t v; // init zfar so MakeSkyVec works even though // a world hasn't been bounded backEnd.viewParms.zFar = 1024; for ( i = 0; i < 6; i++ ) { for ( t = 0; t <= SKY_SUBDIVISIONS; t++ ) { for ( s = 0; s <= SKY_SUBDIVISIONS; s++ ) { // compute vector from view origin to sky side integral point MakeSkyVec( (float)(s - HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS, (float)(t - HALF_SKY_SUBDIVISIONS) / HALF_SKY_SUBDIVISIONS, i, NULL, skyVec ); // compute parametric value 'p' that intersects with cloud layer p = ( 1.0f / ( 2 * DotProduct( skyVec, skyVec ) ) ) * ( -2 * skyVec[2] * radiusWorld + 2 * sqrt( Square( skyVec[2] ) * Square( radiusWorld ) + 2 * Square( skyVec[0] ) * radiusWorld * heightCloud + Square( skyVec[0] ) * Square( heightCloud ) + 2 * Square( skyVec[1] ) * radiusWorld * heightCloud + Square( skyVec[1] ) * Square( heightCloud ) + 2 * Square( skyVec[2] ) * radiusWorld * heightCloud + Square( skyVec[2] ) * Square( heightCloud ) ) ); // compute intersection point based on p VectorScale( skyVec, p, v ); v[2] += radiusWorld; // compute vector from world origin to intersection point 'v' VectorNormalize( v ); sRad = Q_acos( v[0] ); tRad = Q_acos( v[1] ); s_cloudTexCoords[i][t][s][0] = sRad; s_cloudTexCoords[i][t][s][1] = tRad; } } } } /////////////////////////////////////////////////////////////// // all of the visible sky triangles are in tess // other things could be stuck in here, like birds in the sky, etc void RB_StageIteratorSky() { if ( r_fastsky->integer ) { return; } GL_Program(); // project all the polygons onto the sky box // to see which blocks on each side need to be drawn RB_ClipSkyPolygons( &tess ); CalcSkyBounds(); // r_showsky will let all the sky blocks be drawn in // front of everything to allow developers to see how // much sky is getting sucked in if ( r_showsky->integer ) { qglDepthRange( 0.0, 0.0 ); } else { qglDepthRange( 1.0, 1.0 ); } // draw the outer skybox if ( tess.shader->sky.outerbox[0] && tess.shader->sky.outerbox[0] != tr.defaultImage ) { qglColor3f( tr.identityLight, tr.identityLight, tr.identityLight ); qglPushMatrix(); GL_State( 0 ); qglTranslatef (backEnd.viewParms.orient.origin[0], backEnd.viewParms.orient.origin[1], backEnd.viewParms.orient.origin[2]); DrawSkyBox( tess.shader ); qglPopMatrix(); } // generate the vertexes for all the clouds (if any) // which will be drawn by the generic shader routine R_BuildCloudData( &tess ); if (tess.numVertexes) ARB_StageIterator(); // back to normal depth range qglDepthRange( 0.0, 1.0 ); }