/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_mesh.c: triangle model functions #include "tr_local.h" static float ProjectRadius( float r, const vec3_t location ) { float pr; float dist; float c; vec3_t p; float projected[4]; c = DotProduct( tr.viewParms.orient.axis[0], tr.viewParms.orient.origin ); dist = DotProduct( tr.viewParms.orient.axis[0], location ) - c; if ( dist <= 0 ) return 0; p[0] = 0; p[1] = fabs( r ); p[2] = -dist; projected[0] = p[0] * tr.viewParms.projectionMatrix[0] + p[1] * tr.viewParms.projectionMatrix[4] + p[2] * tr.viewParms.projectionMatrix[8] + tr.viewParms.projectionMatrix[12]; projected[1] = p[0] * tr.viewParms.projectionMatrix[1] + p[1] * tr.viewParms.projectionMatrix[5] + p[2] * tr.viewParms.projectionMatrix[9] + tr.viewParms.projectionMatrix[13]; projected[2] = p[0] * tr.viewParms.projectionMatrix[2] + p[1] * tr.viewParms.projectionMatrix[6] + p[2] * tr.viewParms.projectionMatrix[10] + tr.viewParms.projectionMatrix[14]; projected[3] = p[0] * tr.viewParms.projectionMatrix[3] + p[1] * tr.viewParms.projectionMatrix[7] + p[2] * tr.viewParms.projectionMatrix[11] + tr.viewParms.projectionMatrix[15]; pr = projected[1] / projected[3]; if ( pr > 1.0f ) pr = 1.0f; return pr; } static int R_CullModel( const md3Header_t* header, trRefEntity_t* ent ) { const md3Frame_t *oldFrame, *newFrame; // compute frame pointers newFrame = (const md3Frame_t*) ( ( byte * ) header + header->ofsFrames ) + ent->e.frame; oldFrame = (const md3Frame_t*) ( ( byte * ) header + header->ofsFrames ) + ent->e.oldframe; // cull bounding sphere ONLY if this is not an upscaled entity if ( !ent->e.nonNormalizedAxes ) { if ( ent->e.frame == ent->e.oldframe ) { switch ( R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius ) ) { case CULL_OUT: tr.pc[RF_MD3_CULL_S_OUT]++; return CULL_OUT; case CULL_IN: tr.pc[RF_MD3_CULL_S_IN]++; return CULL_IN; case CULL_CLIP: tr.pc[RF_MD3_CULL_S_CLIP]++; break; } } else { int sphereCull, sphereCullB; sphereCull = R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius ); if ( newFrame == oldFrame ) { sphereCullB = sphereCull; } else { sphereCullB = R_CullLocalPointAndRadius( oldFrame->localOrigin, oldFrame->radius ); } if ( sphereCull == sphereCullB ) { if ( sphereCull == CULL_OUT ) { tr.pc[RF_MD3_CULL_S_OUT]++; return CULL_OUT; } else if ( sphereCull == CULL_IN ) { tr.pc[RF_MD3_CULL_S_IN]++; return CULL_IN; } else { tr.pc[RF_MD3_CULL_S_CLIP]++; } } } } // calculate a bounding box in the current coordinate system vec3_t bounds[2]; for (int i = 0; i < 3; ++i) { bounds[0][i] = min( oldFrame->bounds[0][i], newFrame->bounds[0][i] ); bounds[1][i] = max( oldFrame->bounds[1][i], newFrame->bounds[1][i] ); } switch ( R_CullLocalBox( bounds ) ) { case CULL_IN: tr.pc[RF_MD3_CULL_B_IN]++; return CULL_IN; case CULL_CLIP: tr.pc[RF_MD3_CULL_B_CLIP]++; return CULL_CLIP; case CULL_OUT: default: tr.pc[RF_MD3_CULL_B_OUT]++; return CULL_OUT; } } static int R_ComputeLOD( const trRefEntity_t* ent ) { float radius; float flod; float projectedRadius; int lod; if ( tr.currentModel->numLods < 2 ) { // model has only 1 LOD level, skip computations and bias lod = 0; } else { // multiple LODs exist, so compute projected bounding sphere // and use that as a criteria for selecting LOD const md3Frame_t* frame = (const md3Frame_t*)(((unsigned char *)tr.currentModel->md3[0]) + tr.currentModel->md3[0]->ofsFrames); frame += ent->e.frame; radius = RadiusFromBounds( frame->bounds[0], frame->bounds[1] ); if ( ( projectedRadius = ProjectRadius( radius, ent->e.origin ) ) != 0 ) { flod = 1.0f - projectedRadius * r_lodscale->value; } else { // object intersects near view plane, e.g. view weapon flod = 0; } flod *= tr.currentModel->numLods; lod = (int)flod; if ( lod < 0 ) { lod = 0; } else if ( lod >= tr.currentModel->numLods ) { lod = tr.currentModel->numLods - 1; } } lod += r_lodbias->integer; if ( lod >= tr.currentModel->numLods ) lod = tr.currentModel->numLods - 1; if ( lod < 0 ) lod = 0; return lod; } void R_AddMD3Surfaces( trRefEntity_t* ent ) { // don't add third_person objects if not in a portal qbool personalModel = (ent->e.renderfx & RF_THIRD_PERSON) != 0 && !tr.viewParms.isPortal; if ( ent->e.renderfx & RF_WRAP_FRAMES ) { ent->e.frame %= tr.currentModel->md3[0]->numFrames; ent->e.oldframe %= tr.currentModel->md3[0]->numFrames; } // // Validate the frames so there is no chance of a crash. // This will write directly into the entity structure, so // when the surfaces are rendered, they don't need to be // range checked again. // if ( (ent->e.frame >= tr.currentModel->md3[0]->numFrames) || (ent->e.frame < 0) || (ent->e.oldframe >= tr.currentModel->md3[0]->numFrames) || (ent->e.oldframe < 0) ) { ri.Printf( PRINT_DEVELOPER, "R_AddMD3Surfaces: no such frame %d to %d for '%s'\n", ent->e.oldframe, ent->e.frame, tr.currentModel->name ); ent->e.frame = 0; ent->e.oldframe = 0; } int lod = R_ComputeLOD( ent ); const md3Header_t* header = tr.currentModel->md3[lod]; // cull the entire model if merged bounding box of both frames is outside the view frustum if (R_CullModel(header, ent) == CULL_OUT) return; // set up lighting now that we know we aren't culled if (!personalModel) R_SetupEntityLighting( &tr.refdef, ent ); // draw all surfaces const shader_t* shader; const md3Surface_t* surface = (const md3Surface_t*)((byte *)header + header->ofsSurfaces); for (int i = 0; i < header->numSurfaces; ++i) { if ( ent->e.customShader ) { shader = R_GetShaderByHandle( ent->e.customShader ); } else if ( ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins ) { // match the surface name to something in the skin file const skin_t* skin = R_GetSkinByHandle(ent->e.customSkin); shader = tr.defaultShader; for (int j = 0; j < skin->numSurfaces; ++j) { // the names have both been lowercased if ( !strcmp( skin->surfaces[j]->name, surface->name ) ) { shader = skin->surfaces[j]->shader; break; } } if (shader == tr.defaultShader) { ri.Printf( PRINT_DEVELOPER, "WARNING: no shader for surface %s in skin %s\n", surface->name, skin->name); } else if (shader->defaultShader) { ri.Printf( PRINT_DEVELOPER, "WARNING: shader %s in skin %s not found\n", shader->name, skin->name); } } else if ( surface->numShaders <= 0 ) { shader = tr.defaultShader; } else { const md3Shader_t* md3Shader = (const md3Shader_t*)((byte *)surface + surface->ofsShaders); md3Shader += ent->e.skinNum % surface->numShaders; shader = tr.shaders[ md3Shader->shaderIndex ]; } // don't add third_person objects if not viewing through a portal if ( !personalModel ) { R_AddDrawSurf( (const surfaceType_t*)surface, shader ); } surface = (const md3Surface_t*)( (byte *)surface + surface->ofsEnd ); } }