// MIT License // Copyright (c) 2022 Evan Pezent // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // ImPlot v0.14 // You may use this file to debug, understand or extend ImPlot features but we // don't provide any guarantee of forward compatibility! //----------------------------------------------------------------------------- // [SECTION] Header Mess //----------------------------------------------------------------------------- #pragma once #ifndef IMGUI_DEFINE_MATH_OPERATORS #define IMGUI_DEFINE_MATH_OPERATORS #endif #include #include "../imgui/imgui_internal.h" #ifndef IMPLOT_VERSION #error Must include implot.h before implot_internal.h #endif // Support for pre-1.84 versions. ImPool's GetSize() -> GetBufSize() #if (IMGUI_VERSION_NUM < 18303) #define GetBufSize GetSize #endif //----------------------------------------------------------------------------- // [SECTION] Constants //----------------------------------------------------------------------------- // Constants can be changed unless stated otherwise. We may move some of these // to ImPlotStyleVar_ over time. // Mimimum allowable timestamp value 01/01/1970 @ 12:00am (UTC) (DO NOT DECREASE THIS) #define IMPLOT_MIN_TIME 0 // Maximum allowable timestamp value 01/01/3000 @ 12:00am (UTC) (DO NOT INCREASE THIS) #define IMPLOT_MAX_TIME 32503680000 // Default label format for axis labels #define IMPLOT_LABEL_FORMAT "%g" // Max character size for tick labels #define IMPLOT_LABEL_MAX_SIZE 32 //----------------------------------------------------------------------------- // [SECTION] Macros //----------------------------------------------------------------------------- #define IMPLOT_NUM_X_AXES ImAxis_Y1 #define IMPLOT_NUM_Y_AXES (ImAxis_COUNT - IMPLOT_NUM_X_AXES) // Split ImU32 color into RGB components [0 255] #define IM_COL32_SPLIT_RGB(col,r,g,b) \ ImU32 r = ((col >> IM_COL32_R_SHIFT) & 0xFF); \ ImU32 g = ((col >> IM_COL32_G_SHIFT) & 0xFF); \ ImU32 b = ((col >> IM_COL32_B_SHIFT) & 0xFF); //----------------------------------------------------------------------------- // [SECTION] Forward Declarations //----------------------------------------------------------------------------- struct ImPlotTick; struct ImPlotAxis; struct ImPlotAxisColor; struct ImPlotItem; struct ImPlotLegend; struct ImPlotPlot; struct ImPlotNextPlotData; struct ImPlotTicker; //----------------------------------------------------------------------------- // [SECTION] Context Pointer //----------------------------------------------------------------------------- #ifndef GImPlot extern IMPLOT_API ImPlotContext* GImPlot; // Current implicit context pointer #endif //----------------------------------------------------------------------------- // [SECTION] Generic Helpers //----------------------------------------------------------------------------- // Computes the common (base-10) logarithm static inline float ImLog10(float x) { return log10f(x); } static inline double ImLog10(double x) { return log10(x); } static inline float ImSinh(float x) { return sinhf(x); } static inline double ImSinh(double x) { return sinh(x); } static inline float ImAsinh(float x) { return asinhf(x); } static inline double ImAsinh(double x) { return asinh(x); } // Returns true if a flag is set template static inline bool ImHasFlag(TSet set, TFlag flag) { return (set & flag) == flag; } // Flips a flag in a flagset template static inline void ImFlipFlag(TSet& set, TFlag flag) { ImHasFlag(set, flag) ? set &= ~flag : set |= flag; } // Linearly remaps x from [x0 x1] to [y0 y1]. template static inline T ImRemap(T x, T x0, T x1, T y0, T y1) { return y0 + (x - x0) * (y1 - y0) / (x1 - x0); } // Linear rempas x from [x0 x1] to [0 1] template static inline T ImRemap01(T x, T x0, T x1) { return (x - x0) / (x1 - x0); } // Returns always positive modulo (assumes r != 0) static inline int ImPosMod(int l, int r) { return (l % r + r) % r; } // Returns true if val is NAN static inline bool ImNan(double val) { return isnan(val); } // Returns true if val is NAN or INFINITY static inline bool ImNanOrInf(double val) { return !(val >= -DBL_MAX && val <= DBL_MAX) || ImNan(val); } // Turns NANs to 0s static inline double ImConstrainNan(double val) { return ImNan(val) ? 0 : val; } // Turns infinity to floating point maximums static inline double ImConstrainInf(double val) { return val >= DBL_MAX ? DBL_MAX : val <= -DBL_MAX ? - DBL_MAX : val; } // Turns numbers less than or equal to 0 to 0.001 (sort of arbitrary, is there a better way?) static inline double ImConstrainLog(double val) { return val <= 0 ? 0.001f : val; } // Turns numbers less than 0 to zero static inline double ImConstrainTime(double val) { return val < IMPLOT_MIN_TIME ? IMPLOT_MIN_TIME : (val > IMPLOT_MAX_TIME ? IMPLOT_MAX_TIME : val); } // True if two numbers are approximately equal using units in the last place. static inline bool ImAlmostEqual(double v1, double v2, int ulp = 2) { return ImAbs(v1-v2) < DBL_EPSILON * ImAbs(v1+v2) * ulp || ImAbs(v1-v2) < DBL_MIN; } // Finds min value in an unsorted array template static inline T ImMinArray(const T* values, int count) { T m = values[0]; for (int i = 1; i < count; ++i) { if (values[i] < m) { m = values[i]; } } return m; } // Finds the max value in an unsorted array template static inline T ImMaxArray(const T* values, int count) { T m = values[0]; for (int i = 1; i < count; ++i) { if (values[i] > m) { m = values[i]; } } return m; } // Finds the min and max value in an unsorted array template static inline void ImMinMaxArray(const T* values, int count, T* min_out, T* max_out) { T Min = values[0]; T Max = values[0]; for (int i = 1; i < count; ++i) { if (values[i] < Min) { Min = values[i]; } if (values[i] > Max) { Max = values[i]; } } *min_out = Min; *max_out = Max; } // Finds the sim of an array template static inline T ImSum(const T* values, int count) { T sum = 0; for (int i = 0; i < count; ++i) sum += values[i]; return sum; } // Finds the mean of an array template static inline double ImMean(const T* values, int count) { double den = 1.0 / count; double mu = 0; for (int i = 0; i < count; ++i) mu += (double)values[i] * den; return mu; } // Finds the sample standard deviation of an array template static inline double ImStdDev(const T* values, int count) { double den = 1.0 / (count - 1.0); double mu = ImMean(values, count); double x = 0; for (int i = 0; i < count; ++i) x += ((double)values[i] - mu) * ((double)values[i] - mu) * den; return sqrt(x); } // Mix color a and b by factor s in [0 256] static inline ImU32 ImMixU32(ImU32 a, ImU32 b, ImU32 s) { #ifdef IMPLOT_MIX64 const ImU32 af = 256-s; const ImU32 bf = s; const ImU64 al = (a & 0x00ff00ff) | (((ImU64)(a & 0xff00ff00)) << 24); const ImU64 bl = (b & 0x00ff00ff) | (((ImU64)(b & 0xff00ff00)) << 24); const ImU64 mix = (al * af + bl * bf); return ((mix >> 32) & 0xff00ff00) | ((mix & 0xff00ff00) >> 8); #else const ImU32 af = 256-s; const ImU32 bf = s; const ImU32 al = (a & 0x00ff00ff); const ImU32 ah = (a & 0xff00ff00) >> 8; const ImU32 bl = (b & 0x00ff00ff); const ImU32 bh = (b & 0xff00ff00) >> 8; const ImU32 ml = (al * af + bl * bf); const ImU32 mh = (ah * af + bh * bf); return (mh & 0xff00ff00) | ((ml & 0xff00ff00) >> 8); #endif } // Lerp across an array of 32-bit collors given t in [0.0 1.0] static inline ImU32 ImLerpU32(const ImU32* colors, int size, float t) { int i1 = (int)((size - 1 ) * t); int i2 = i1 + 1; if (i2 == size || size == 1) return colors[i1]; float den = 1.0f / (size - 1); float t1 = i1 * den; float t2 = i2 * den; float tr = ImRemap01(t, t1, t2); return ImMixU32(colors[i1], colors[i2], (ImU32)(tr*256)); } // Set alpha channel of 32-bit color from float in range [0.0 1.0] static inline ImU32 ImAlphaU32(ImU32 col, float alpha) { return col & ~((ImU32)((1.0f-alpha)*255)< static inline bool ImOverlaps(T min_a, T max_a, T min_b, T max_b) { return min_a <= max_b && min_b <= max_a; } //----------------------------------------------------------------------------- // [SECTION] ImPlot Enums //----------------------------------------------------------------------------- typedef int ImPlotTimeUnit; // -> enum ImPlotTimeUnit_ typedef int ImPlotDateFmt; // -> enum ImPlotDateFmt_ typedef int ImPlotTimeFmt; // -> enum ImPlotTimeFmt_ enum ImPlotTimeUnit_ { ImPlotTimeUnit_Us, // microsecond ImPlotTimeUnit_Ms, // millisecond ImPlotTimeUnit_S, // second ImPlotTimeUnit_Min, // minute ImPlotTimeUnit_Hr, // hour ImPlotTimeUnit_Day, // day ImPlotTimeUnit_Mo, // month ImPlotTimeUnit_Yr, // year ImPlotTimeUnit_COUNT }; enum ImPlotDateFmt_ { // default [ ISO 8601 ] ImPlotDateFmt_None = 0, ImPlotDateFmt_DayMo, // 10/3 [ --10-03 ] ImPlotDateFmt_DayMoYr, // 10/3/91 [ 1991-10-03 ] ImPlotDateFmt_MoYr, // Oct 1991 [ 1991-10 ] ImPlotDateFmt_Mo, // Oct [ --10 ] ImPlotDateFmt_Yr // 1991 [ 1991 ] }; enum ImPlotTimeFmt_ { // default [ 24 Hour Clock ] ImPlotTimeFmt_None = 0, ImPlotTimeFmt_Us, // .428 552 [ .428 552 ] ImPlotTimeFmt_SUs, // :29.428 552 [ :29.428 552 ] ImPlotTimeFmt_SMs, // :29.428 [ :29.428 ] ImPlotTimeFmt_S, // :29 [ :29 ] ImPlotTimeFmt_MinSMs, // 21:29.428 [ 21:29.428 ] ImPlotTimeFmt_HrMinSMs, // 7:21:29.428pm [ 19:21:29.428 ] ImPlotTimeFmt_HrMinS, // 7:21:29pm [ 19:21:29 ] ImPlotTimeFmt_HrMin, // 7:21pm [ 19:21 ] ImPlotTimeFmt_Hr // 7pm [ 19:00 ] }; //----------------------------------------------------------------------------- // [SECTION] Callbacks //----------------------------------------------------------------------------- typedef void (*ImPlotLocator)(ImPlotTicker& ticker, const ImPlotRange& range, float pixels, bool vertical, ImPlotFormatter formatter, void* formatter_data); //----------------------------------------------------------------------------- // [SECTION] Structs //----------------------------------------------------------------------------- // Combined date/time format spec struct ImPlotDateTimeSpec { ImPlotDateTimeSpec() {} ImPlotDateTimeSpec(ImPlotDateFmt date_fmt, ImPlotTimeFmt time_fmt, bool use_24_hr_clk = false, bool use_iso_8601 = false) { Date = date_fmt; Time = time_fmt; UseISO8601 = use_iso_8601; Use24HourClock = use_24_hr_clk; } ImPlotDateFmt Date; ImPlotTimeFmt Time; bool UseISO8601; bool Use24HourClock; }; // Two part timestamp struct. struct ImPlotTime { time_t S; // second part int Us; // microsecond part ImPlotTime() { S = 0; Us = 0; } ImPlotTime(time_t s, int us = 0) { S = s + us / 1000000; Us = us % 1000000; } void RollOver() { S = S + Us / 1000000; Us = Us % 1000000; } double ToDouble() const { return (double)S + (double)Us / 1000000.0; } static ImPlotTime FromDouble(double t) { return ImPlotTime((time_t)t, (int)(t * 1000000 - floor(t) * 1000000)); } }; static inline ImPlotTime operator+(const ImPlotTime& lhs, const ImPlotTime& rhs) { return ImPlotTime(lhs.S + rhs.S, lhs.Us + rhs.Us); } static inline ImPlotTime operator-(const ImPlotTime& lhs, const ImPlotTime& rhs) { return ImPlotTime(lhs.S - rhs.S, lhs.Us - rhs.Us); } static inline bool operator==(const ImPlotTime& lhs, const ImPlotTime& rhs) { return lhs.S == rhs.S && lhs.Us == rhs.Us; } static inline bool operator<(const ImPlotTime& lhs, const ImPlotTime& rhs) { return lhs.S == rhs.S ? lhs.Us < rhs.Us : lhs.S < rhs.S; } static inline bool operator>(const ImPlotTime& lhs, const ImPlotTime& rhs) { return rhs < lhs; } static inline bool operator<=(const ImPlotTime& lhs, const ImPlotTime& rhs) { return lhs < rhs || lhs == rhs; } static inline bool operator>=(const ImPlotTime& lhs, const ImPlotTime& rhs) { return lhs > rhs || lhs == rhs; } // Colormap data storage struct ImPlotColormapData { ImVector Keys; ImVector KeyCounts; ImVector KeyOffsets; ImVector Tables; ImVector TableSizes; ImVector TableOffsets; ImGuiTextBuffer Text; ImVector TextOffsets; ImVector Quals; ImGuiStorage Map; int Count; ImPlotColormapData() { Count = 0; } int Append(const char* name, const ImU32* keys, int count, bool qual) { if (GetIndex(name) != -1) return -1; KeyOffsets.push_back(Keys.size()); KeyCounts.push_back(count); Keys.reserve(Keys.size()+count); for (int i = 0; i < count; ++i) Keys.push_back(keys[i]); TextOffsets.push_back(Text.size()); Text.append(name, name + strlen(name) + 1); Quals.push_back(qual); ImGuiID id = ImHashStr(name); int idx = Count++; Map.SetInt(id,idx); _AppendTable(idx); return idx; } void _AppendTable(ImPlotColormap cmap) { int key_count = GetKeyCount(cmap); const ImU32* keys = GetKeys(cmap); int off = Tables.size(); TableOffsets.push_back(off); if (IsQual(cmap)) { Tables.reserve(key_count); for (int i = 0; i < key_count; ++i) Tables.push_back(keys[i]); TableSizes.push_back(key_count); } else { int max_size = 255 * (key_count-1) + 1; Tables.reserve(off + max_size); // ImU32 last = keys[0]; // Tables.push_back(last); // int n = 1; for (int i = 0; i < key_count-1; ++i) { for (int s = 0; s < 255; ++s) { ImU32 a = keys[i]; ImU32 b = keys[i+1]; ImU32 c = ImMixU32(a,b,s); // if (c != last) { Tables.push_back(c); // last = c; // n++; // } } } ImU32 c = keys[key_count-1]; // if (c != last) { Tables.push_back(c); // n++; // } // TableSizes.push_back(n); TableSizes.push_back(max_size); } } void RebuildTables() { Tables.resize(0); TableSizes.resize(0); TableOffsets.resize(0); for (int i = 0; i < Count; ++i) _AppendTable(i); } inline bool IsQual(ImPlotColormap cmap) const { return Quals[cmap]; } inline const char* GetName(ImPlotColormap cmap) const { return cmap < Count ? Text.Buf.Data + TextOffsets[cmap] : NULL; } inline ImPlotColormap GetIndex(const char* name) const { ImGuiID key = ImHashStr(name); return Map.GetInt(key,-1); } inline const ImU32* GetKeys(ImPlotColormap cmap) const { return &Keys[KeyOffsets[cmap]]; } inline int GetKeyCount(ImPlotColormap cmap) const { return KeyCounts[cmap]; } inline ImU32 GetKeyColor(ImPlotColormap cmap, int idx) const { return Keys[KeyOffsets[cmap]+idx]; } inline void SetKeyColor(ImPlotColormap cmap, int idx, ImU32 value) { Keys[KeyOffsets[cmap]+idx] = value; RebuildTables(); } inline const ImU32* GetTable(ImPlotColormap cmap) const { return &Tables[TableOffsets[cmap]]; } inline int GetTableSize(ImPlotColormap cmap) const { return TableSizes[cmap]; } inline ImU32 GetTableColor(ImPlotColormap cmap, int idx) const { return Tables[TableOffsets[cmap]+idx]; } inline ImU32 LerpTable(ImPlotColormap cmap, float t) const { int off = TableOffsets[cmap]; int siz = TableSizes[cmap]; int idx = Quals[cmap] ? ImClamp((int)(siz*t),0,siz-1) : (int)((siz - 1) * t + 0.5f); return Tables[off + idx]; } }; // ImPlotPoint with positive/negative error values struct ImPlotPointError { double X, Y, Neg, Pos; ImPlotPointError(double x, double y, double neg, double pos) { X = x; Y = y; Neg = neg; Pos = pos; } }; // Interior plot label/annotation struct ImPlotAnnotation { ImVec2 Pos; ImVec2 Offset; ImU32 ColorBg; ImU32 ColorFg; int TextOffset; bool Clamp; ImPlotAnnotation() { ColorBg = ColorFg = 0; TextOffset = 0; Clamp = false; } }; // Collection of plot labels struct ImPlotAnnotationCollection { ImVector Annotations; ImGuiTextBuffer TextBuffer; int Size; ImPlotAnnotationCollection() { Reset(); } void AppendV(const ImVec2& pos, const ImVec2& off, ImU32 bg, ImU32 fg, bool clamp, const char* fmt, va_list args) IM_FMTLIST(7) { ImPlotAnnotation an; an.Pos = pos; an.Offset = off; an.ColorBg = bg; an.ColorFg = fg; an.TextOffset = TextBuffer.size(); an.Clamp = clamp; Annotations.push_back(an); TextBuffer.appendfv(fmt, args); const char nul[] = ""; TextBuffer.append(nul,nul+1); Size++; } void Append(const ImVec2& pos, const ImVec2& off, ImU32 bg, ImU32 fg, bool clamp, const char* fmt, ...) IM_FMTARGS(7) { va_list args; va_start(args, fmt); AppendV(pos, off, bg, fg, clamp, fmt, args); va_end(args); } const char* GetText(int idx) { return TextBuffer.Buf.Data + Annotations[idx].TextOffset; } void Reset() { Annotations.shrink(0); TextBuffer.Buf.shrink(0); Size = 0; } }; struct ImPlotTag { ImAxis Axis; double Value; ImU32 ColorBg; ImU32 ColorFg; int TextOffset; }; struct ImPlotTagCollection { ImVector Tags; ImGuiTextBuffer TextBuffer; int Size; ImPlotTagCollection() { Reset(); } void AppendV(ImAxis axis, double value, ImU32 bg, ImU32 fg, const char* fmt, va_list args) IM_FMTLIST(6) { ImPlotTag tag; tag.Axis = axis; tag.Value = value; tag.ColorBg = bg; tag.ColorFg = fg; tag.TextOffset = TextBuffer.size(); Tags.push_back(tag); TextBuffer.appendfv(fmt, args); const char nul[] = ""; TextBuffer.append(nul,nul+1); Size++; } void Append(ImAxis axis, double value, ImU32 bg, ImU32 fg, const char* fmt, ...) IM_FMTARGS(6) { va_list args; va_start(args, fmt); AppendV(axis, value, bg, fg, fmt, args); va_end(args); } const char* GetText(int idx) { return TextBuffer.Buf.Data + Tags[idx].TextOffset; } void Reset() { Tags.shrink(0); TextBuffer.Buf.shrink(0); Size = 0; } }; // Tick mark info struct ImPlotTick { double PlotPos; float PixelPos; ImVec2 LabelSize; int TextOffset; bool Major; bool ShowLabel; int Level; int Idx; ImPlotTick(double value, bool major, int level, bool show_label) { PixelPos = 0; PlotPos = value; Major = major; ShowLabel = show_label; Level = level; TextOffset = -1; } }; // Collection of ticks struct ImPlotTicker { ImVector Ticks; ImGuiTextBuffer TextBuffer; ImVec2 MaxSize; ImVec2 LateSize; int Levels; ImPlotTicker() { Reset(); } ImPlotTick& AddTick(double value, bool major, int level, bool show_label, const char* label) { ImPlotTick tick(value, major, level, show_label); if (show_label && label != NULL) { tick.TextOffset = TextBuffer.size(); TextBuffer.append(label, label + strlen(label) + 1); tick.LabelSize = ImGui::CalcTextSize(TextBuffer.Buf.Data + tick.TextOffset); } return AddTick(tick); } ImPlotTick& AddTick(double value, bool major, int level, bool show_label, ImPlotFormatter formatter, void* data) { ImPlotTick tick(value, major, level, show_label); if (show_label && formatter != NULL) { char buff[IMPLOT_LABEL_MAX_SIZE]; tick.TextOffset = TextBuffer.size(); formatter(tick.PlotPos, buff, sizeof(buff), data); TextBuffer.append(buff, buff + strlen(buff) + 1); tick.LabelSize = ImGui::CalcTextSize(TextBuffer.Buf.Data + tick.TextOffset); } return AddTick(tick); } inline ImPlotTick& AddTick(ImPlotTick tick) { if (tick.ShowLabel) { MaxSize.x = tick.LabelSize.x > MaxSize.x ? tick.LabelSize.x : MaxSize.x; MaxSize.y = tick.LabelSize.y > MaxSize.y ? tick.LabelSize.y : MaxSize.y; } tick.Idx = Ticks.size(); Ticks.push_back(tick); return Ticks.back(); } const char* GetText(int idx) const { return TextBuffer.Buf.Data + Ticks[idx].TextOffset; } const char* GetText(const ImPlotTick& tick) { return GetText(tick.Idx); } void OverrideSizeLate(const ImVec2& size) { LateSize.x = size.x > LateSize.x ? size.x : LateSize.x; LateSize.y = size.y > LateSize.y ? size.y : LateSize.y; } void Reset() { Ticks.shrink(0); TextBuffer.Buf.shrink(0); MaxSize = LateSize; LateSize = ImVec2(0,0); Levels = 1; } int TickCount() const { return Ticks.Size; } }; // Axis state information that must persist after EndPlot struct ImPlotAxis { ImGuiID ID; ImPlotAxisFlags Flags; ImPlotAxisFlags PreviousFlags; ImPlotRange Range; ImPlotCond RangeCond; ImPlotScale Scale; ImPlotRange FitExtents; ImPlotAxis* OrthoAxis; ImPlotRange ConstraintRange; ImPlotRange ConstraintZoom; ImPlotTicker Ticker; ImPlotFormatter Formatter; void* FormatterData; char FormatSpec[16]; ImPlotLocator Locator; double* LinkedMin; double* LinkedMax; int PickerLevel; ImPlotTime PickerTimeMin, PickerTimeMax; ImPlotTransform TransformForward; ImPlotTransform TransformInverse; void* TransformData; float PixelMin, PixelMax; double ScaleMin, ScaleMax; double ScaleToPixel; float Datum1, Datum2; ImRect HoverRect; int LabelOffset; ImU32 ColorMaj, ColorMin, ColorTick, ColorTxt, ColorBg, ColorHov, ColorAct, ColorHiLi; bool Enabled; bool Vertical; bool FitThisFrame; bool HasRange; bool HasFormatSpec; bool ShowDefaultTicks; bool Hovered; bool Held; ImPlotAxis() { ID = 0; Flags = PreviousFlags = ImPlotAxisFlags_None; Range.Min = 0; Range.Max = 1; Scale = ImPlotScale_Linear; TransformForward = TransformInverse = NULL; TransformData = NULL; FitExtents.Min = HUGE_VAL; FitExtents.Max = -HUGE_VAL; OrthoAxis = NULL; ConstraintRange = ImPlotRange(-INFINITY,INFINITY); ConstraintZoom = ImPlotRange(DBL_MIN,INFINITY); LinkedMin = LinkedMax = NULL; PickerLevel = 0; Datum1 = Datum2 = 0; PixelMin = PixelMax = 0; LabelOffset = -1; ColorMaj = ColorMin = ColorTick = ColorTxt = ColorBg = ColorHov = ColorAct = 0; ColorHiLi = IM_COL32_BLACK_TRANS; Formatter = NULL; FormatterData = NULL; Locator = NULL; Enabled = Hovered = Held = FitThisFrame = HasRange = HasFormatSpec = false; ShowDefaultTicks = true; } inline void Reset() { Enabled = false; Scale = ImPlotScale_Linear; TransformForward = TransformInverse = NULL; TransformData = NULL; LabelOffset = -1; HasFormatSpec = false; Formatter = NULL; FormatterData = NULL; Locator = NULL; ShowDefaultTicks = true; FitThisFrame = false; FitExtents.Min = HUGE_VAL; FitExtents.Max = -HUGE_VAL; OrthoAxis = NULL; ConstraintRange = ImPlotRange(-INFINITY,INFINITY); ConstraintZoom = ImPlotRange(DBL_MIN,INFINITY); Ticker.Reset(); } inline bool SetMin(double _min, bool force=false) { if (!force && IsLockedMin()) return false; _min = ImConstrainNan(ImConstrainInf(_min)); if (_min < ConstraintRange.Min) _min = ConstraintRange.Min; double z = Range.Max - _min; if (z < ConstraintZoom.Min) _min = Range.Max - ConstraintZoom.Min; if (z > ConstraintZoom.Max) _min = Range.Max - ConstraintZoom.Max; if (_min >= Range.Max) return false; Range.Min = _min; PickerTimeMin = ImPlotTime::FromDouble(Range.Min); UpdateTransformCache(); return true; }; inline bool SetMax(double _max, bool force=false) { if (!force && IsLockedMax()) return false; _max = ImConstrainNan(ImConstrainInf(_max)); if (_max > ConstraintRange.Max) _max = ConstraintRange.Max; double z = _max - Range.Min; if (z < ConstraintZoom.Min) _max = Range.Min + ConstraintZoom.Min; if (z > ConstraintZoom.Max) _max = Range.Min + ConstraintZoom.Max; if (_max <= Range.Min) return false; Range.Max = _max; PickerTimeMax = ImPlotTime::FromDouble(Range.Max); UpdateTransformCache(); return true; }; inline void SetRange(double v1, double v2) { Range.Min = ImMin(v1,v2); Range.Max = ImMax(v1,v2); Constrain(); PickerTimeMin = ImPlotTime::FromDouble(Range.Min); PickerTimeMax = ImPlotTime::FromDouble(Range.Max); UpdateTransformCache(); } inline void SetRange(const ImPlotRange& range) { SetRange(range.Min, range.Max); } inline void SetAspect(double unit_per_pix) { double new_size = unit_per_pix * PixelSize(); double delta = (new_size - Range.Size()) * 0.5; if (IsLocked()) return; else if (IsLockedMin() && !IsLockedMax()) SetRange(Range.Min, Range.Max + 2*delta); else if (!IsLockedMin() && IsLockedMax()) SetRange(Range.Min - 2*delta, Range.Max); else SetRange(Range.Min - delta, Range.Max + delta); } inline float PixelSize() const { return ImAbs(PixelMax - PixelMin); } inline double GetAspect() const { return Range.Size() / PixelSize(); } inline void Constrain() { Range.Min = ImConstrainNan(ImConstrainInf(Range.Min)); Range.Max = ImConstrainNan(ImConstrainInf(Range.Max)); if (Range.Min < ConstraintRange.Min) Range.Min = ConstraintRange.Min; if (Range.Max > ConstraintRange.Max) Range.Max = ConstraintRange.Max; double z = Range.Size(); if (z < ConstraintZoom.Min) { double delta = (ConstraintZoom.Min - z) * 0.5; Range.Min -= delta; Range.Max += delta; } if (z > ConstraintZoom.Max) { double delta = (z - ConstraintZoom.Max) * 0.5; Range.Min += delta; Range.Max -= delta; } if (Range.Max <= Range.Min) Range.Max = Range.Min + DBL_EPSILON; } inline void UpdateTransformCache() { ScaleToPixel = (PixelMax - PixelMin) / Range.Size(); if (TransformForward != NULL) { ScaleMin = TransformForward(Range.Min, TransformData); ScaleMax = TransformForward(Range.Max, TransformData); } else { ScaleMin = Range.Min; ScaleMax = Range.Max; } } inline float PlotToPixels(double plt) const { if (TransformForward != NULL) { double s = TransformForward(plt, TransformData); double t = (s - ScaleMin) / (ScaleMax - ScaleMin); plt = Range.Min + Range.Size() * t; } return (float)(PixelMin + ScaleToPixel * (plt - Range.Min)); } inline double PixelsToPlot(float pix) const { double plt = (pix - PixelMin) / ScaleToPixel + Range.Min; if (TransformInverse != NULL) { double t = (plt - Range.Min) / Range.Size(); double s = t * (ScaleMax - ScaleMin) + ScaleMin; plt = TransformInverse(s, TransformData); } return plt; } inline void ExtendFit(double v) { if (!ImNanOrInf(v) && v >= ConstraintRange.Min && v <= ConstraintRange.Max) { FitExtents.Min = v < FitExtents.Min ? v : FitExtents.Min; FitExtents.Max = v > FitExtents.Max ? v : FitExtents.Max; } } inline void ExtendFitWith(ImPlotAxis& alt, double v, double v_alt) { if (ImHasFlag(Flags, ImPlotAxisFlags_RangeFit) && !alt.Range.Contains(v_alt)) return; if (!ImNanOrInf(v) && v >= ConstraintRange.Min && v <= ConstraintRange.Max) { FitExtents.Min = v < FitExtents.Min ? v : FitExtents.Min; FitExtents.Max = v > FitExtents.Max ? v : FitExtents.Max; } } inline void ApplyFit(float padding) { const double ext_size = FitExtents.Size() * 0.5; FitExtents.Min -= ext_size * padding; FitExtents.Max += ext_size * padding; if (!IsLockedMin() && !ImNanOrInf(FitExtents.Min)) Range.Min = FitExtents.Min; if (!IsLockedMax() && !ImNanOrInf(FitExtents.Max)) Range.Max = FitExtents.Max; if (ImAlmostEqual(Range.Min, Range.Max)) { Range.Max += 0.5; Range.Min -= 0.5; } Constrain(); UpdateTransformCache(); } inline bool HasLabel() const { return LabelOffset != -1 && !ImHasFlag(Flags, ImPlotAxisFlags_NoLabel); } inline bool HasGridLines() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoGridLines); } inline bool HasTickLabels() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoTickLabels); } inline bool HasTickMarks() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoTickMarks); } inline bool WillRender() const { return Enabled && (HasGridLines() || HasTickLabels() || HasTickMarks()); } inline bool IsOpposite() const { return ImHasFlag(Flags, ImPlotAxisFlags_Opposite); } inline bool IsInverted() const { return ImHasFlag(Flags, ImPlotAxisFlags_Invert); } inline bool IsForeground() const { return ImHasFlag(Flags, ImPlotAxisFlags_Foreground); } inline bool IsAutoFitting() const { return ImHasFlag(Flags, ImPlotAxisFlags_AutoFit); } inline bool CanInitFit() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoInitialFit) && !HasRange && !LinkedMin && !LinkedMax; } inline bool IsRangeLocked() const { return HasRange && RangeCond == ImPlotCond_Always; } inline bool IsLockedMin() const { return !Enabled || IsRangeLocked() || ImHasFlag(Flags, ImPlotAxisFlags_LockMin); } inline bool IsLockedMax() const { return !Enabled || IsRangeLocked() || ImHasFlag(Flags, ImPlotAxisFlags_LockMax); } inline bool IsLocked() const { return IsLockedMin() && IsLockedMax(); } inline bool IsInputLockedMin() const { return IsLockedMin() || IsAutoFitting(); } inline bool IsInputLockedMax() const { return IsLockedMax() || IsAutoFitting(); } inline bool IsInputLocked() const { return IsLocked() || IsAutoFitting(); } inline bool HasMenus() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoMenus); } inline bool IsPanLocked(bool increasing) { if (ImHasFlag(Flags, ImPlotAxisFlags_PanStretch)) { return IsInputLocked(); } else { if (IsLockedMin() || IsLockedMax() || IsAutoFitting()) return false; if (increasing) return Range.Max == ConstraintRange.Max; else return Range.Min == ConstraintRange.Min; } } void PushLinks() { if (LinkedMin) { *LinkedMin = Range.Min; } if (LinkedMax) { *LinkedMax = Range.Max; } } void PullLinks() { if (LinkedMin) { SetMin(*LinkedMin,true); } if (LinkedMax) { SetMax(*LinkedMax,true); } } }; // Align plots group data struct ImPlotAlignmentData { bool Vertical; float PadA; float PadB; float PadAMax; float PadBMax; ImPlotAlignmentData() { Vertical = true; PadA = PadB = PadAMax = PadBMax = 0; } void Begin() { PadAMax = PadBMax = 0; } void Update(float& pad_a, float& pad_b, float& delta_a, float& delta_b) { float bak_a = pad_a; float bak_b = pad_b; if (PadAMax < pad_a) { PadAMax = pad_a; } if (PadBMax < pad_b) { PadBMax = pad_b; } if (pad_a < PadA) { pad_a = PadA; delta_a = pad_a - bak_a; } else { delta_a = 0; } if (pad_b < PadB) { pad_b = PadB; delta_b = pad_b - bak_b; } else { delta_b = 0; } } void End() { PadA = PadAMax; PadB = PadBMax; } void Reset() { PadA = PadB = PadAMax = PadBMax = 0; } }; // State information for Plot items struct ImPlotItem { ImGuiID ID; ImU32 Color; ImRect LegendHoverRect; int NameOffset; bool Show; bool LegendHovered; bool SeenThisFrame; ImPlotItem() { ID = 0; Color = IM_COL32_WHITE; NameOffset = -1; Show = true; SeenThisFrame = false; LegendHovered = false; } ~ImPlotItem() { ID = 0; } }; // Holds Legend state struct ImPlotLegend { ImPlotLegendFlags Flags; ImPlotLegendFlags PreviousFlags; ImPlotLocation Location; ImPlotLocation PreviousLocation; ImVector Indices; ImGuiTextBuffer Labels; ImRect Rect; bool Hovered; bool Held; bool CanGoInside; ImPlotLegend() { Flags = PreviousFlags = ImPlotLegendFlags_None; CanGoInside = true; Hovered = Held = false; Location = PreviousLocation = ImPlotLocation_NorthWest; } void Reset() { Indices.shrink(0); Labels.Buf.shrink(0); } }; // Holds Items and Legend data struct ImPlotItemGroup { ImGuiID ID; ImPlotLegend Legend; ImPool ItemPool; int ColormapIdx; ImPlotItemGroup() { ID = 0; ColormapIdx = 0; } int GetItemCount() const { return ItemPool.GetBufSize(); } ImGuiID GetItemID(const char* label_id) { return ImGui::GetID(label_id); /* GetIDWithSeed */ } ImPlotItem* GetItem(ImGuiID id) { return ItemPool.GetByKey(id); } ImPlotItem* GetItem(const char* label_id) { return GetItem(GetItemID(label_id)); } ImPlotItem* GetOrAddItem(ImGuiID id) { return ItemPool.GetOrAddByKey(id); } ImPlotItem* GetItemByIndex(int i) { return ItemPool.GetByIndex(i); } int GetItemIndex(ImPlotItem* item) { return ItemPool.GetIndex(item); } int GetLegendCount() const { return Legend.Indices.size(); } ImPlotItem* GetLegendItem(int i) { return ItemPool.GetByIndex(Legend.Indices[i]); } const char* GetLegendLabel(int i) { return Legend.Labels.Buf.Data + GetLegendItem(i)->NameOffset; } void Reset() { ItemPool.Clear(); Legend.Reset(); ColormapIdx = 0; } }; // Holds Plot state information that must persist after EndPlot struct ImPlotPlot { ImGuiID ID; ImPlotFlags Flags; ImPlotFlags PreviousFlags; ImPlotLocation MouseTextLocation; ImPlotMouseTextFlags MouseTextFlags; ImPlotAxis Axes[ImAxis_COUNT]; ImGuiTextBuffer TextBuffer; ImPlotItemGroup Items; ImAxis CurrentX; ImAxis CurrentY; ImRect FrameRect; ImRect CanvasRect; ImRect PlotRect; ImRect AxesRect; ImRect SelectRect; ImVec2 SelectStart; int TitleOffset; bool JustCreated; bool Initialized; bool SetupLocked; bool FitThisFrame; bool Hovered; bool Held; bool Selecting; bool Selected; bool ContextLocked; ImPlotPlot() { Flags = PreviousFlags = ImPlotFlags_None; for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i) XAxis(i).Vertical = false; for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i) YAxis(i).Vertical = true; SelectStart = ImVec2(0,0); CurrentX = ImAxis_X1; CurrentY = ImAxis_Y1; MouseTextLocation = ImPlotLocation_South | ImPlotLocation_East; MouseTextFlags = ImPlotMouseTextFlags_None; TitleOffset = -1; JustCreated = true; Initialized = SetupLocked = FitThisFrame = false; Hovered = Held = Selected = Selecting = ContextLocked = false; } inline bool IsInputLocked() const { for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i) { if (!XAxis(i).IsInputLocked()) return false; } for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i) { if (!YAxis(i).IsInputLocked()) return false; } return true; } inline void ClearTextBuffer() { TextBuffer.Buf.shrink(0); } inline void SetTitle(const char* title) { if (title && ImGui::FindRenderedTextEnd(title, NULL) != title) { TitleOffset = TextBuffer.size(); TextBuffer.append(title, title + strlen(title) + 1); } else { TitleOffset = -1; } } inline bool HasTitle() const { return TitleOffset != -1 && !ImHasFlag(Flags, ImPlotFlags_NoTitle); } inline const char* GetTitle() const { return TextBuffer.Buf.Data + TitleOffset; } inline ImPlotAxis& XAxis(int i) { return Axes[ImAxis_X1 + i]; } inline const ImPlotAxis& XAxis(int i) const { return Axes[ImAxis_X1 + i]; } inline ImPlotAxis& YAxis(int i) { return Axes[ImAxis_Y1 + i]; } inline const ImPlotAxis& YAxis(int i) const { return Axes[ImAxis_Y1 + i]; } inline int EnabledAxesX() { int cnt = 0; for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i) cnt += XAxis(i).Enabled; return cnt; } inline int EnabledAxesY() { int cnt = 0; for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i) cnt += YAxis(i).Enabled; return cnt; } inline void SetAxisLabel(ImPlotAxis& axis, const char* label) { if (label && ImGui::FindRenderedTextEnd(label, NULL) != label) { axis.LabelOffset = TextBuffer.size(); TextBuffer.append(label, label + strlen(label) + 1); } else { axis.LabelOffset = -1; } } inline const char* GetAxisLabel(const ImPlotAxis& axis) const { return TextBuffer.Buf.Data + axis.LabelOffset; } }; // Holds subplot data that must persist after EndSubplot struct ImPlotSubplot { ImGuiID ID; ImPlotSubplotFlags Flags; ImPlotSubplotFlags PreviousFlags; ImPlotItemGroup Items; int Rows; int Cols; int CurrentIdx; ImRect FrameRect; ImRect GridRect; ImVec2 CellSize; ImVector RowAlignmentData; ImVector ColAlignmentData; ImVector RowRatios; ImVector ColRatios; ImVector RowLinkData; ImVector ColLinkData; float TempSizes[2]; bool FrameHovered; bool HasTitle; ImPlotSubplot() { ID = 0; Flags = PreviousFlags = ImPlotSubplotFlags_None; Rows = Cols = CurrentIdx = 0; FrameHovered = false; Items.Legend.Location = ImPlotLocation_North; Items.Legend.Flags = ImPlotLegendFlags_Horizontal|ImPlotLegendFlags_Outside; Items.Legend.CanGoInside = false; TempSizes[0] = TempSizes[1] = 0; FrameHovered = false; HasTitle = false; } }; // Temporary data storage for upcoming plot struct ImPlotNextPlotData { ImPlotCond RangeCond[ImAxis_COUNT]; ImPlotRange Range[ImAxis_COUNT]; bool HasRange[ImAxis_COUNT]; bool Fit[ImAxis_COUNT]; double* LinkedMin[ImAxis_COUNT]; double* LinkedMax[ImAxis_COUNT]; ImPlotNextPlotData() { Reset(); } void Reset() { for (int i = 0; i < ImAxis_COUNT; ++i) { HasRange[i] = false; Fit[i] = false; LinkedMin[i] = LinkedMax[i] = NULL; } } }; // Temporary data storage for upcoming item struct ImPlotNextItemData { ImVec4 Colors[5]; // ImPlotCol_Line, ImPlotCol_Fill, ImPlotCol_MarkerOutline, ImPlotCol_MarkerFill, ImPlotCol_ErrorBar float LineWeight; ImPlotMarker Marker; float MarkerSize; float MarkerWeight; float FillAlpha; float ErrorBarSize; float ErrorBarWeight; float DigitalBitHeight; float DigitalBitGap; bool RenderLine; bool RenderFill; bool RenderMarkerLine; bool RenderMarkerFill; bool HasHidden; bool Hidden; ImPlotCond HiddenCond; ImPlotNextItemData() { Reset(); } void Reset() { for (int i = 0; i < 5; ++i) Colors[i] = IMPLOT_AUTO_COL; LineWeight = MarkerSize = MarkerWeight = FillAlpha = ErrorBarSize = ErrorBarWeight = DigitalBitHeight = DigitalBitGap = IMPLOT_AUTO; Marker = IMPLOT_AUTO; HasHidden = Hidden = false; } }; // Holds state information that must persist between calls to BeginPlot()/EndPlot() struct ImPlotContext { // Plot States ImPool Plots; ImPool Subplots; ImPlotPlot* CurrentPlot; ImPlotSubplot* CurrentSubplot; ImPlotItemGroup* CurrentItems; ImPlotItem* CurrentItem; ImPlotItem* PreviousItem; // Tick Marks and Labels ImPlotTicker CTicker; // Annotation and Tabs ImPlotAnnotationCollection Annotations; ImPlotTagCollection Tags; // Flags bool ChildWindowMade; // Style and Colormaps ImPlotStyle Style; ImVector ColorModifiers; ImVector StyleModifiers; ImPlotColormapData ColormapData; ImVector ColormapModifiers; // Time tm Tm; // Temp data for general use ImVector TempDouble1, TempDouble2; ImVector TempInt1; // Misc int DigitalPlotItemCnt; int DigitalPlotOffset; ImPlotNextPlotData NextPlotData; ImPlotNextItemData NextItemData; ImPlotInputMap InputMap; bool OpenContextThisFrame; ImGuiTextBuffer MousePosStringBuilder; ImPlotItemGroup* SortItems; // Align plots ImPool AlignmentData; ImPlotAlignmentData* CurrentAlignmentH; ImPlotAlignmentData* CurrentAlignmentV; }; //----------------------------------------------------------------------------- // [SECTION] Internal API // No guarantee of forward compatibility here! //----------------------------------------------------------------------------- namespace ImPlot { //----------------------------------------------------------------------------- // [SECTION] Context Utils //----------------------------------------------------------------------------- // Initializes an ImPlotContext IMPLOT_API void Initialize(ImPlotContext* ctx); // Resets an ImPlot context for the next call to BeginPlot IMPLOT_API void ResetCtxForNextPlot(ImPlotContext* ctx); // Resets an ImPlot context for the next call to BeginAlignedPlots IMPLOT_API void ResetCtxForNextAlignedPlots(ImPlotContext* ctx); // Resets an ImPlot context for the next call to BeginSubplot IMPLOT_API void ResetCtxForNextSubplot(ImPlotContext* ctx); //----------------------------------------------------------------------------- // [SECTION] Plot Utils //----------------------------------------------------------------------------- // Gets a plot from the current ImPlotContext IMPLOT_API ImPlotPlot* GetPlot(const char* title); // Gets the current plot from the current ImPlotContext IMPLOT_API ImPlotPlot* GetCurrentPlot(); // Busts the cache for every plot in the current context IMPLOT_API void BustPlotCache(); // Shows a plot's context menu. IMPLOT_API void ShowPlotContextMenu(ImPlotPlot& plot); //----------------------------------------------------------------------------- // [SECTION] Setup Utils //----------------------------------------------------------------------------- // Lock Setup and call SetupFinish if necessary. static inline void SetupLock() { if (!GImPlot->CurrentPlot->SetupLocked) SetupFinish(); GImPlot->CurrentPlot->SetupLocked = true; } //----------------------------------------------------------------------------- // [SECTION] Subplot Utils //----------------------------------------------------------------------------- // Advances to next subplot IMPLOT_API void SubplotNextCell(); // Shows a subplot's context menu. IMPLOT_API void ShowSubplotsContextMenu(ImPlotSubplot& subplot); //----------------------------------------------------------------------------- // [SECTION] Item Utils //----------------------------------------------------------------------------- // Begins a new item. Returns false if the item should not be plotted. Pushes PlotClipRect. IMPLOT_API bool BeginItem(const char* label_id, ImPlotItemFlags flags=0, ImPlotCol recolor_from=IMPLOT_AUTO); // Same as above but with fitting functionality. template bool BeginItemEx(const char* label_id, const _Fitter& fitter, ImPlotItemFlags flags=0, ImPlotCol recolor_from=IMPLOT_AUTO) { if (BeginItem(label_id, flags, recolor_from)) { ImPlotPlot& plot = *GetCurrentPlot(); if (plot.FitThisFrame && !ImHasFlag(flags, ImPlotItemFlags_NoFit)) fitter.Fit(plot.Axes[plot.CurrentX], plot.Axes[plot.CurrentY]); return true; } return false; } // Ends an item (call only if BeginItem returns true). Pops PlotClipRect. IMPLOT_API void EndItem(); // Register or get an existing item from the current plot. IMPLOT_API ImPlotItem* RegisterOrGetItem(const char* label_id, ImPlotItemFlags flags, bool* just_created = NULL); // Get a plot item from the current plot. IMPLOT_API ImPlotItem* GetItem(const char* label_id); // Gets the current item. IMPLOT_API ImPlotItem* GetCurrentItem(); // Busts the cache for every item for every plot in the current context. IMPLOT_API void BustItemCache(); //----------------------------------------------------------------------------- // [SECTION] Axis Utils //----------------------------------------------------------------------------- // Returns true if any enabled axis is locked from user input. static inline bool AnyAxesInputLocked(ImPlotAxis* axes, int count) { for (int i = 0; i < count; ++i) { if (axes[i].Enabled && axes[i].IsInputLocked()) return true; } return false; } // Returns true if all enabled axes are locked from user input. static inline bool AllAxesInputLocked(ImPlotAxis* axes, int count) { for (int i = 0; i < count; ++i) { if (axes[i].Enabled && !axes[i].IsInputLocked()) return false; } return true; } static inline bool AnyAxesHeld(ImPlotAxis* axes, int count) { for (int i = 0; i < count; ++i) { if (axes[i].Enabled && axes[i].Held) return true; } return false; } static inline bool AnyAxesHovered(ImPlotAxis* axes, int count) { for (int i = 0; i < count; ++i) { if (axes[i].Enabled && axes[i].Hovered) return true; } return false; } // Returns true if the user has requested data to be fit. static inline bool FitThisFrame() { return GImPlot->CurrentPlot->FitThisFrame; } // Extends the current plot's axes so that it encompasses a vertical line at x static inline void FitPointX(double x) { ImPlotPlot& plot = *GetCurrentPlot(); ImPlotAxis& x_axis = plot.Axes[plot.CurrentX]; x_axis.ExtendFit(x); } // Extends the current plot's axes so that it encompasses a horizontal line at y static inline void FitPointY(double y) { ImPlotPlot& plot = *GetCurrentPlot(); ImPlotAxis& y_axis = plot.Axes[plot.CurrentY]; y_axis.ExtendFit(y); } // Extends the current plot's axes so that it encompasses point p static inline void FitPoint(const ImPlotPoint& p) { ImPlotPlot& plot = *GetCurrentPlot(); ImPlotAxis& x_axis = plot.Axes[plot.CurrentX]; ImPlotAxis& y_axis = plot.Axes[plot.CurrentY]; x_axis.ExtendFitWith(y_axis, p.x, p.y); y_axis.ExtendFitWith(x_axis, p.y, p.x); } // Returns true if two ranges overlap static inline bool RangesOverlap(const ImPlotRange& r1, const ImPlotRange& r2) { return r1.Min <= r2.Max && r2.Min <= r1.Max; } // Shows an axis's context menu. IMPLOT_API void ShowAxisContextMenu(ImPlotAxis& axis, ImPlotAxis* equal_axis, bool time_allowed = false); //----------------------------------------------------------------------------- // [SECTION] Legend Utils //----------------------------------------------------------------------------- // Gets the position of an inner rect that is located inside of an outer rect according to an ImPlotLocation and padding amount. IMPLOT_API ImVec2 GetLocationPos(const ImRect& outer_rect, const ImVec2& inner_size, ImPlotLocation location, const ImVec2& pad = ImVec2(0,0)); // Calculates the bounding box size of a legend IMPLOT_API ImVec2 CalcLegendSize(ImPlotItemGroup& items, const ImVec2& pad, const ImVec2& spacing, bool vertical); // Renders legend entries into a bounding box IMPLOT_API bool ShowLegendEntries(ImPlotItemGroup& items, const ImRect& legend_bb, bool interactable, const ImVec2& pad, const ImVec2& spacing, bool vertical, ImDrawList& DrawList); // Shows an alternate legend for the plot identified by #title_id, outside of the plot frame (can be called before or after of Begin/EndPlot but must occur in the same ImGui window!). IMPLOT_API void ShowAltLegend(const char* title_id, bool vertical = true, const ImVec2 size = ImVec2(0,0), bool interactable = true); // Shows an legends's context menu. IMPLOT_API bool ShowLegendContextMenu(ImPlotLegend& legend, bool visible); //----------------------------------------------------------------------------- // [SECTION] Label Utils //----------------------------------------------------------------------------- // Create a a string label for a an axis value IMPLOT_API void LabelAxisValue(const ImPlotAxis& axis, double value, char* buff, int size, bool round = false); //----------------------------------------------------------------------------- // [SECTION] Styling Utils //----------------------------------------------------------------------------- // Get styling data for next item (call between Begin/EndItem) static inline const ImPlotNextItemData& GetItemData() { return GImPlot->NextItemData; } // Returns true if a color is set to be automatically determined static inline bool IsColorAuto(const ImVec4& col) { return col.w == -1; } // Returns true if a style color is set to be automaticaly determined static inline bool IsColorAuto(ImPlotCol idx) { return IsColorAuto(GImPlot->Style.Colors[idx]); } // Returns the automatically deduced style color IMPLOT_API ImVec4 GetAutoColor(ImPlotCol idx); // Returns the style color whether it is automatic or custom set static inline ImVec4 GetStyleColorVec4(ImPlotCol idx) { return IsColorAuto(idx) ? GetAutoColor(idx) : GImPlot->Style.Colors[idx]; } static inline ImU32 GetStyleColorU32(ImPlotCol idx) { return ImGui::ColorConvertFloat4ToU32(GetStyleColorVec4(idx)); } // Draws vertical text. The position is the bottom left of the text rect. IMPLOT_API void AddTextVertical(ImDrawList *DrawList, ImVec2 pos, ImU32 col, const char* text_begin, const char* text_end = NULL); // Draws multiline horizontal text centered. IMPLOT_API void AddTextCentered(ImDrawList* DrawList, ImVec2 top_center, ImU32 col, const char* text_begin, const char* text_end = NULL); // Calculates the size of vertical text static inline ImVec2 CalcTextSizeVertical(const char *text) { ImVec2 sz = ImGui::CalcTextSize(text); return ImVec2(sz.y, sz.x); } // Returns white or black text given background color static inline ImU32 CalcTextColor(const ImVec4& bg) { return (bg.x * 0.299f + bg.y * 0.587f + bg.z * 0.114f) > 0.5f ? IM_COL32_BLACK : IM_COL32_WHITE; } static inline ImU32 CalcTextColor(ImU32 bg) { return CalcTextColor(ImGui::ColorConvertU32ToFloat4(bg)); } // Lightens or darkens a color for hover static inline ImU32 CalcHoverColor(ImU32 col) { return ImMixU32(col, CalcTextColor(col), 32); } // Clamps a label position so that it fits a rect defined by Min/Max static inline ImVec2 ClampLabelPos(ImVec2 pos, const ImVec2& size, const ImVec2& Min, const ImVec2& Max) { if (pos.x < Min.x) pos.x = Min.x; if (pos.y < Min.y) pos.y = Min.y; if ((pos.x + size.x) > Max.x) pos.x = Max.x - size.x; if ((pos.y + size.y) > Max.y) pos.y = Max.y - size.y; return pos; } // Returns a color from the Color map given an index >= 0 (modulo will be performed). IMPLOT_API ImU32 GetColormapColorU32(int idx, ImPlotColormap cmap); // Returns the next unused colormap color and advances the colormap. Can be used to skip colors if desired. IMPLOT_API ImU32 NextColormapColorU32(); // Linearly interpolates a color from the current colormap given t between 0 and 1. IMPLOT_API ImU32 SampleColormapU32(float t, ImPlotColormap cmap); // Render a colormap bar IMPLOT_API void RenderColorBar(const ImU32* colors, int size, ImDrawList& DrawList, const ImRect& bounds, bool vert, bool reversed, bool continuous); //----------------------------------------------------------------------------- // [SECTION] Math and Misc Utils //----------------------------------------------------------------------------- // Rounds x to powers of 2,5 and 10 for generating axis labels (from Graphics Gems 1 Chapter 11.2) IMPLOT_API double NiceNum(double x, bool round); // Computes order of magnitude of double. static inline int OrderOfMagnitude(double val) { return val == 0 ? 0 : (int)(floor(log10(fabs(val)))); } // Returns the precision required for a order of magnitude. static inline int OrderToPrecision(int order) { return order > 0 ? 0 : 1 - order; } // Returns a floating point precision to use given a value static inline int Precision(double val) { return OrderToPrecision(OrderOfMagnitude(val)); } // Round a value to a given precision static inline double RoundTo(double val, int prec) { double p = pow(10,(double)prec); return floor(val*p+0.5)/p; } // Returns the intersection point of two lines A and B (assumes they are not parallel!) static inline ImVec2 Intersection(const ImVec2& a1, const ImVec2& a2, const ImVec2& b1, const ImVec2& b2) { float v1 = (a1.x * a2.y - a1.y * a2.x); float v2 = (b1.x * b2.y - b1.y * b2.x); float v3 = ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x)); return ImVec2((v1 * (b1.x - b2.x) - v2 * (a1.x - a2.x)) / v3, (v1 * (b1.y - b2.y) - v2 * (a1.y - a2.y)) / v3); } // Fills a buffer with n samples linear interpolated from vmin to vmax template void FillRange(ImVector& buffer, int n, T vmin, T vmax) { buffer.resize(n); T step = (vmax - vmin) / (n - 1); for (int i = 0; i < n; ++i) { buffer[i] = vmin + i * step; } } // Calculate histogram bin counts and widths template static inline void CalculateBins(const T* values, int count, ImPlotBin meth, const ImPlotRange& range, int& bins_out, double& width_out) { switch (meth) { case ImPlotBin_Sqrt: bins_out = (int)ceil(sqrt(count)); break; case ImPlotBin_Sturges: bins_out = (int)ceil(1.0 + log2(count)); break; case ImPlotBin_Rice: bins_out = (int)ceil(2 * cbrt(count)); break; case ImPlotBin_Scott: width_out = 3.49 * ImStdDev(values, count) / cbrt(count); bins_out = (int)round(range.Size() / width_out); break; } width_out = range.Size() / bins_out; } //----------------------------------------------------------------------------- // Time Utils //----------------------------------------------------------------------------- // Returns true if year is leap year (366 days long) static inline bool IsLeapYear(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // Returns the number of days in a month, accounting for Feb. leap years. #month is zero indexed. static inline int GetDaysInMonth(int year, int month) { static const int days[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; return days[month] + (int)(month == 1 && IsLeapYear(year)); } // Make a UNIX timestamp from a tm struct expressed in UTC time (i.e. GMT timezone). IMPLOT_API ImPlotTime MkGmtTime(struct tm *ptm); // Make a tm struct expressed in UTC time (i.e. GMT timezone) from a UNIX timestamp. IMPLOT_API tm* GetGmtTime(const ImPlotTime& t, tm* ptm); // Make a UNIX timestamp from a tm struct expressed in local time. IMPLOT_API ImPlotTime MkLocTime(struct tm *ptm); // Make a tm struct expressed in local time from a UNIX timestamp. IMPLOT_API tm* GetLocTime(const ImPlotTime& t, tm* ptm); // NB: The following functions only work if there is a current ImPlotContext because the // internal tm struct is owned by the context! They are aware of ImPlotStyle.UseLocalTime. // Make a timestamp from time components. // year[1970-3000], month[0-11], day[1-31], hour[0-23], min[0-59], sec[0-59], us[0,999999] IMPLOT_API ImPlotTime MakeTime(int year, int month = 0, int day = 1, int hour = 0, int min = 0, int sec = 0, int us = 0); // Get year component from timestamp [1970-3000] IMPLOT_API int GetYear(const ImPlotTime& t); // Adds or subtracts time from a timestamp. #count > 0 to add, < 0 to subtract. IMPLOT_API ImPlotTime AddTime(const ImPlotTime& t, ImPlotTimeUnit unit, int count); // Rounds a timestamp down to nearest unit. IMPLOT_API ImPlotTime FloorTime(const ImPlotTime& t, ImPlotTimeUnit unit); // Rounds a timestamp up to the nearest unit. IMPLOT_API ImPlotTime CeilTime(const ImPlotTime& t, ImPlotTimeUnit unit); // Rounds a timestamp up or down to the nearest unit. IMPLOT_API ImPlotTime RoundTime(const ImPlotTime& t, ImPlotTimeUnit unit); // Combines the date of one timestamp with the time-of-day of another timestamp. IMPLOT_API ImPlotTime CombineDateTime(const ImPlotTime& date_part, const ImPlotTime& time_part); // Formats the time part of timestamp t into a buffer according to #fmt IMPLOT_API int FormatTime(const ImPlotTime& t, char* buffer, int size, ImPlotTimeFmt fmt, bool use_24_hr_clk); // Formats the date part of timestamp t into a buffer according to #fmt IMPLOT_API int FormatDate(const ImPlotTime& t, char* buffer, int size, ImPlotDateFmt fmt, bool use_iso_8601); // Formats the time and/or date parts of a timestamp t into a buffer according to #fmt IMPLOT_API int FormatDateTime(const ImPlotTime& t, char* buffer, int size, ImPlotDateTimeSpec fmt); // Shows a date picker widget block (year/month/day). // #level = 0 for day, 1 for month, 2 for year. Modified by user interaction. // #t will be set when a day is clicked and the function will return true. // #t1 and #t2 are optional dates to highlight. IMPLOT_API bool ShowDatePicker(const char* id, int* level, ImPlotTime* t, const ImPlotTime* t1 = NULL, const ImPlotTime* t2 = NULL); // Shows a time picker widget block (hour/min/sec). // #t will be set when a new hour, minute, or sec is selected or am/pm is toggled, and the function will return true. IMPLOT_API bool ShowTimePicker(const char* id, ImPlotTime* t); //----------------------------------------------------------------------------- // [SECTION] Transforms //----------------------------------------------------------------------------- static inline double TransformForward_Log10(double v, void*) { v = v <= 0.0 ? DBL_MIN : v; return ImLog10(v); } static inline double TransformInverse_Log10(double v, void*) { return ImPow(10, v); } static inline double TransformForward_SymLog(double v, void*) { return 2.0 * ImAsinh(v / 2.0); } static inline double TransformInverse_SymLog(double v, void*) { return 2.0 * ImSinh(v / 2.0); } static inline double TransformForward_Logit(double v, void*) { v = ImClamp(v, DBL_MIN, 1.0 - DBL_EPSILON); return ImLog10(v / (1 - v)); } static inline double TransformInverse_Logit(double v, void*) { return 1.0 / (1.0 + ImPow(10,-v)); } //----------------------------------------------------------------------------- // [SECTION] Formatters //----------------------------------------------------------------------------- static inline int Formatter_Default(double value, char* buff, int size, void* data) { char* fmt = (char*)data; return ImFormatString(buff, size, fmt, value); } static inline int Formatter_Logit(double value, char* buff, int size, void*) { if (value == 0.5) return ImFormatString(buff,size,"1/2"); else if (value < 0.5) return ImFormatString(buff,size,"%g", value); else return ImFormatString(buff,size,"1 - %g", 1 - value); } struct Formatter_Time_Data { ImPlotTime Time; ImPlotDateTimeSpec Spec; ImPlotFormatter UserFormatter; void* UserFormatterData; }; static inline int Formatter_Time(double, char* buff, int size, void* data) { Formatter_Time_Data* ftd = (Formatter_Time_Data*)data; return FormatDateTime(ftd->Time, buff, size, ftd->Spec); } //------------------------------------------------------------------------------ // [SECTION] Locator //------------------------------------------------------------------------------ void Locator_Default(ImPlotTicker& ticker, const ImPlotRange& range, float pixels, bool vertical, ImPlotFormatter formatter, void* formatter_data); void Locator_Time(ImPlotTicker& ticker, const ImPlotRange& range, float pixels, bool vertical, ImPlotFormatter formatter, void* formatter_data); void Locator_Log10(ImPlotTicker& ticker, const ImPlotRange& range, float pixels, bool vertical, ImPlotFormatter formatter, void* formatter_data); void Locator_SymLog(ImPlotTicker& ticker, const ImPlotRange& range, float pixels, bool vertical, ImPlotFormatter formatter, void* formatter_data); } // namespace ImPlot