/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_main.c -- main control flow for each frame #include "tr_local.h" trGlobals_t tr; refimport_t ri; const float s_flipMatrix[16] = { // convert from our coordinate system (looking down X) // to the back-end's coordinate system (looking down -Z) 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 }; static void R_LocalPointToWorld( const vec3_t local, vec3_t world ) { world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0] + tr.orient.origin[0]; world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1] + tr.orient.origin[1]; world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2] + tr.orient.origin[2]; } static void R_LocalNormalToWorld( const vec3_t local, vec3_t world ) { world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0]; world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1]; world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2]; } // returns CULL_IN, CULL_CLIP, or CULL_OUT int R_CullLocalBox( const vec3_t bounds[2] ) { int i, j; vec3_t transformed[8]; float dists[8]; vec3_t v; cplane_t *frust; int anyBack; int front, back; if ( r_nocull->integer ) { return CULL_CLIP; } // transform into world space for (i = 0 ; i < 8 ; i++) { v[0] = bounds[i&1][0]; v[1] = bounds[(i>>1)&1][1]; v[2] = bounds[(i>>2)&1][2]; VectorCopy( tr.orient.origin, transformed[i] ); VectorMA( transformed[i], v[0], tr.orient.axis[0], transformed[i] ); VectorMA( transformed[i], v[1], tr.orient.axis[1], transformed[i] ); VectorMA( transformed[i], v[2], tr.orient.axis[2], transformed[i] ); } // check against frustum planes anyBack = 0; for (i = 0 ; i < 4 ; i++) { frust = &tr.viewParms.frustum[i]; front = back = 0; for (j = 0 ; j < 8 ; j++) { dists[j] = DotProduct(transformed[j], frust->normal); if ( dists[j] > frust->dist ) { front = 1; if ( back ) { break; // a point is in front } } else { back = 1; } } if ( !front ) { // all points were behind one of the planes return CULL_OUT; } anyBack |= back; } if ( !anyBack ) { return CULL_IN; // completely inside frustum } return CULL_CLIP; // partially clipped } int R_CullPointAndRadius( const vec3_t pt, float radius ) { qbool mightBeClipped = qfalse; if ( r_nocull->integer ) { return CULL_CLIP; } // check against frustum planes for (int i = 0; i < 4; ++i) { const cplane_t* frust = &tr.viewParms.frustum[i]; float dist = DotProduct( pt, frust->normal) - frust->dist; if ( dist < -radius ) { return CULL_OUT; } else if ( dist <= radius ) { mightBeClipped = qtrue; } } if ( mightBeClipped ) { return CULL_CLIP; } return CULL_IN; // completely inside frustum } int R_CullLocalPointAndRadius( const vec3_t pt, float radius ) { vec3_t transformed; R_LocalPointToWorld( pt, transformed ); return R_CullPointAndRadius( transformed, radius ); } /* ========================== R_TransformModelToClip ========================== */ void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix, vec4_t eye, vec4_t dst ) { int i; for ( i = 0 ; i < 4 ; i++ ) { eye[i] = src[0] * modelMatrix[ i + 0 * 4 ] + src[1] * modelMatrix[ i + 1 * 4 ] + src[2] * modelMatrix[ i + 2 * 4 ] + 1 * modelMatrix[ i + 3 * 4 ]; } for ( i = 0 ; i < 4 ; i++ ) { dst[i] = eye[0] * projectionMatrix[ i + 0 * 4 ] + eye[1] * projectionMatrix[ i + 1 * 4 ] + eye[2] * projectionMatrix[ i + 2 * 4 ] + eye[3] * projectionMatrix[ i + 3 * 4 ]; } } /* ========================== R_TransformClipToWindow ========================== */ void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) { normalized[0] = clip[0] / clip[3]; normalized[1] = clip[1] / clip[3]; normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] ); window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth; window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight; window[2] = normalized[2]; window[0] = (int) ( window[0] + 0.5 ); window[1] = (int) ( window[1] + 0.5 ); } void R_MultMatrix( const float *a, const float *b, float *out ) { for ( int i = 0 ; i < 4 ; i++ ) { for ( int j = 0 ; j < 4 ; j++ ) { out[ i * 4 + j ] = a [ i * 4 + 0 ] * b [ 0 * 4 + j ] + a [ i * 4 + 1 ] * b [ 1 * 4 + j ] + a [ i * 4 + 2 ] * b [ 2 * 4 + j ] + a [ i * 4 + 3 ] * b [ 3 * 4 + j ]; } } } void R_MakeIdentityMatrix( float* m ) { m[ 0] = 1.0f; m[ 1] = 0.0f; m[ 2] = 0.0f; m[ 3] = 0.0f; m[ 4] = 0.0f; m[ 5] = 1.0f; m[ 6] = 0.0f; m[ 7] = 0.0f; m[ 8] = 0.0f; m[ 9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; } void R_MakeOrthoProjectionMatrix( float* m, float w, float h ) { // 2/(r-l) 0 0 0 // 0 2/(t-b) 0 0 // 0 0 1/(zf-zn) 0 // (l+r)/(l-r) (t+b)/(b-t) zn/(zn-zf) 1 const float n = 0.0f; const float f = 2.0f; m[ 0] = 2.0f / w; m[ 4] = 0.0f; m[ 8] = 0.0f; m[12] = -1.0f; m[ 1] = 0.0f; m[ 5] = -2.0f / h; m[ 9] = 0.0f; m[13] = 1.0f; m[ 2] = 0.0f; m[ 6] = 0.0f; m[10] = 1.0f / (f - n); m[14] = 0.0f; m[ 3] = 0.0f; m[ 7] = 0.0f; m[11] = n / (n - f); m[15] = 1.0f; } /* ================= R_RotateForEntity Generates an orientation for an entity and viewParms Does NOT produce any GL calls Called by both the front end and the back end ================= */ void R_RotateForEntity( const trRefEntity_t* ent, const viewParms_t* viewParms, orientationr_t* orient ) { float glMatrix[16]; vec3_t delta; float axisLength; if ( ent->e.reType != RT_MODEL ) { *orient = viewParms->world; return; } VectorCopy( ent->e.origin, orient->origin ); VectorCopy( ent->e.axis[0], orient->axis[0] ); VectorCopy( ent->e.axis[1], orient->axis[1] ); VectorCopy( ent->e.axis[2], orient->axis[2] ); glMatrix[0] = orient->axis[0][0]; glMatrix[4] = orient->axis[1][0]; glMatrix[8] = orient->axis[2][0]; glMatrix[12] = orient->origin[0]; glMatrix[1] = orient->axis[0][1]; glMatrix[5] = orient->axis[1][1]; glMatrix[9] = orient->axis[2][1]; glMatrix[13] = orient->origin[1]; glMatrix[2] = orient->axis[0][2]; glMatrix[6] = orient->axis[1][2]; glMatrix[10] = orient->axis[2][2]; glMatrix[14] = orient->origin[2]; glMatrix[3] = 0; glMatrix[7] = 0; glMatrix[11] = 0; glMatrix[15] = 1; R_MultMatrix( glMatrix, viewParms->world.modelMatrix, orient->modelMatrix ); // calculate the viewer origin in the model's space // needed for fog, specular, and environment mapping VectorSubtract( viewParms->orient.origin, orient->origin, delta ); // compensate for scale in the axes if necessary if ( ent->e.nonNormalizedAxes ) { axisLength = VectorLength( ent->e.axis[0] ); if ( !axisLength ) { axisLength = 0; } else { axisLength = 1.0f / axisLength; } } else { axisLength = 1.0f; } orient->viewOrigin[0] = DotProduct( delta, orient->axis[0] ) * axisLength; orient->viewOrigin[1] = DotProduct( delta, orient->axis[1] ) * axisLength; orient->viewOrigin[2] = DotProduct( delta, orient->axis[2] ) * axisLength; } // sets up the modelview matrix for a given viewParm static void R_RotateForViewer() { float viewerMatrix[16]; vec3_t origin; Com_Memset( &tr.orient, 0, sizeof(tr.orient) ); tr.orient.axis[0][0] = 1; tr.orient.axis[1][1] = 1; tr.orient.axis[2][2] = 1; VectorCopy( tr.viewParms.orient.origin, tr.orient.viewOrigin ); // transform by the camera placement VectorCopy( tr.viewParms.orient.origin, origin ); viewerMatrix[0] = tr.viewParms.orient.axis[0][0]; viewerMatrix[4] = tr.viewParms.orient.axis[0][1]; viewerMatrix[8] = tr.viewParms.orient.axis[0][2]; viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8]; viewerMatrix[1] = tr.viewParms.orient.axis[1][0]; viewerMatrix[5] = tr.viewParms.orient.axis[1][1]; viewerMatrix[9] = tr.viewParms.orient.axis[1][2]; viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9]; viewerMatrix[2] = tr.viewParms.orient.axis[2][0]; viewerMatrix[6] = tr.viewParms.orient.axis[2][1]; viewerMatrix[10] = tr.viewParms.orient.axis[2][2]; viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10]; viewerMatrix[3] = 0; viewerMatrix[7] = 0; viewerMatrix[11] = 0; viewerMatrix[15] = 1; // convert from our coordinate system (looking down X) // to the back-end's coordinate system (looking down -Z) R_MultMatrix( viewerMatrix, s_flipMatrix, tr.orient.modelMatrix ); tr.viewParms.world = tr.orient; } static void SetFarClip() { // if not rendering the world (icons, menus, etc) // set a 2k far clip plane if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { tr.viewParms.zFar = 2048; return; } // set far clipping plane dynamically float farthestCornerDistance = 0; for (int i = 0; i < 8; ++i) { vec3_t v; v[0] = (i & 1) ? tr.viewParms.visBounds[0][0] : tr.viewParms.visBounds[1][0]; v[1] = (i & 2) ? tr.viewParms.visBounds[0][1] : tr.viewParms.visBounds[1][1]; v[2] = (i & 4) ? tr.viewParms.visBounds[0][2] : tr.viewParms.visBounds[1][2]; float d = DistanceSquared( v, tr.viewParms.orient.origin ); if ( d > farthestCornerDistance ) { farthestCornerDistance = d; } } tr.viewParms.zFar = sqrt( farthestCornerDistance ); } static void R_SetupProjection() { float width, height, depth; float zNear, zFar; // dynamically compute far clip plane distance SetFarClip(); // // set up projection matrix // zNear = 4.0f; zFar = tr.viewParms.zFar; height = 2.0f * zNear * tan( tr.refdef.fov_y * M_PI / 360.0f ); width = 2.0f * zNear * tan( tr.refdef.fov_x * M_PI / 360.0f ); depth = zFar - zNear; tr.viewParms.projectionMatrix[0] = 2 * zNear / width; tr.viewParms.projectionMatrix[4] = 0; tr.viewParms.projectionMatrix[8] = 0; tr.viewParms.projectionMatrix[12] = 0; tr.viewParms.projectionMatrix[1] = 0; tr.viewParms.projectionMatrix[5] = 2 * zNear / height; tr.viewParms.projectionMatrix[9] = 0; tr.viewParms.projectionMatrix[13] = 0; tr.viewParms.projectionMatrix[2] = 0; tr.viewParms.projectionMatrix[6] = 0; tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth; tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth; tr.viewParms.projectionMatrix[3] = 0; tr.viewParms.projectionMatrix[7] = 0; tr.viewParms.projectionMatrix[11] = -1; tr.viewParms.projectionMatrix[15] = 0; } // set up the culling frustum planes for the current view static void R_SetupFrustum() { float ang, xs, xc; ang = tr.viewParms.fovX / 180 * M_PI * 0.5f; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[0].normal ); VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[0].normal ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[1].normal ); VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[1].normal ); ang = tr.viewParms.fovY / 180 * M_PI * 0.5f; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[2].normal ); VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[2].normal ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[3].normal ); VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[3].normal ); for (int i = 0; i < 4; ++i) { tr.viewParms.frustum[i].type = PLANE_NON_AXIAL; tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.orient.origin, tr.viewParms.frustum[i].normal); SetPlaneSignbits( &tr.viewParms.frustum[i] ); } } static void R_MirrorPoint( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out ) { int i; vec3_t local; vec3_t transformed; float d; VectorSubtract( in, surface->origin, local ); VectorClear( transformed ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct( local, surface->axis[i] ); VectorMA( transformed, d, camera->axis[i], transformed ); } VectorAdd( transformed, camera->origin, out ); } static void R_MirrorVector( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out ) { int i; float d; VectorClear( out ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct( in, surface->axis[i] ); VectorMA( out, d, camera->axis[i], out ); } } static void R_PlaneForSurface( const surfaceType_t* surfType, cplane_t* plane ) { vec4_t plane4; if (!surfType) { Com_Memset( plane, 0, sizeof(*plane) ); plane->normal[0] = 1; return; } switch (*surfType) { case SF_FACE: *plane = ((const srfSurfaceFace_t*)surfType)->plane; return; case SF_TRIANGLES: { const srfTriangles_t* tri = (const srfTriangles_t*)surfType; const srfVert_t* v1 = tri->verts + tri->indexes[0]; const srfVert_t* v2 = tri->verts + tri->indexes[1]; const srfVert_t* v3 = tri->verts + tri->indexes[2]; PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; } return; case SF_POLY: { const srfPoly_t* poly = (const srfPoly_t*)surfType; PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; } return; default: Com_Memset( plane, 0, sizeof(*plane) ); plane->normal[0] = 1; return; } } /* ================= R_GetPortalOrientation entityNum is the entity that the portal surface is a part of, which may be moving and rotating. Returns qtrue if it should be mirrored ================= */ qbool R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum, orientation_t *surface, orientation_t *camera, vec3_t pvsOrigin, qbool *mirror ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; vec3_t transformed; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != ENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin ); } else { plane = originalPlane; } VectorCopy( plane.normal, surface->axis[0] ); PerpendicularVector( surface->axis[1], surface->axis[0] ); CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] ); // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // get the pvsOrigin from the entity VectorCopy( e->e.oldorigin, pvsOrigin ); // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { VectorScale( plane.normal, plane.dist, surface->origin ); VectorCopy( surface->origin, camera->origin ); VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] ); VectorCopy( surface->axis[1], camera->axis[1] ); VectorCopy( surface->axis[2], camera->axis[2] ); *mirror = qtrue; return qtrue; } // project the origin onto the surface plane to get // an origin point we can rotate around d = DotProduct( e->e.origin, plane.normal ) - plane.dist; VectorMA( e->e.origin, -d, surface->axis[0], surface->origin ); // now get the camera origin and orientation VectorCopy( e->e.oldorigin, camera->origin ); AxisCopy( e->e.axis, camera->axis ); VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] ); VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] ); // optionally rotate if ( e->e.oldframe ) { // if a speed is specified if ( e->e.frame ) { // continuous rotate d = (tr.refdef.time/1000.0f) * e->e.frame; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } else { // bobbing rotate, with skinNum being the rotation offset d = sin( tr.refdef.time * 0.003f ); d = e->e.skinNum + d * 4; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } } else if ( e->e.skinNum ) { d = e->e.skinNum; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } *mirror = qfalse; return qtrue; } // if we didn't locate a portal entity, don't render anything. // We don't want to just treat it as a mirror, because without a // portal entity the server won't have communicated a proper entity set // in the snapshot // unfortunately, with local movement prediction it is easily possible // to see a surface before the server has communicated the matching // portal surface entity, so we don't want to print anything here... //ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" ); return qfalse; } static qbool IsMirror( const drawSurf_t *drawSurf, int entityNum ) { int i; cplane_t originalPlane, plane; float d; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != ENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin ); } else { plane = originalPlane; } // locate the portal entity closest to this plane. // origin will be the origin of the portal, // oldorigin will be the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { const trRefEntity_t* e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // if the entity is just a mirror, don't use as a camera point return VectorCompare( e->e.origin, e->e.oldorigin ); } return qfalse; } // determines if a surface is COMPLETELY offscreen static qbool SurfIsOffscreen( const drawSurf_t* drawSurf ) { float shortest = 100000000; int entityNum; int numTriangles; const shader_t *shader; int fogNum; vec4_t clip, eye; int i; unsigned int pointAnd = (unsigned int)~0; R_RotateForViewer(); R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum ); RB_BeginSurface( shader, fogNum ); rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface ); assert( tess.numVertexes < 128 ); for ( i = 0; i < tess.numVertexes; i++ ) { int j; unsigned int pointFlags = 0; R_TransformModelToClip( tess.xyz[i], tr.orient.modelMatrix, tr.viewParms.projectionMatrix, eye, clip ); for ( j = 0; j < 3; j++ ) { if ( clip[j] >= clip[3] ) { pointFlags |= (1 << (j*2)); } else if ( clip[j] <= -clip[3] ) { pointFlags |= ( 1 << (j*2+1)); } } pointAnd &= pointFlags; } // trivially reject if ( pointAnd ) { return qtrue; } // determine if this surface is backfaced and also determine the distance // to the nearest vertex so we can cull based on portal range. Culling // based on vertex distance isn't 100% correct (we should be checking for // range to the surface), but it's good enough for the types of portals // we have in the game right now. numTriangles = tess.numIndexes / 3; for ( i = 0; i < tess.numIndexes; i += 3 ) { vec3_t normal; float dot; float len; VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.orient.origin, normal ); len = VectorLengthSquared( normal ); // lose the sqrt if ( len < shortest ) { shortest = len; } if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 ) { numTriangles--; } } if ( !numTriangles ) { return qtrue; } // mirrors can early out at this point, since we don't do a fade over distance // with them (although we could) if ( IsMirror( drawSurf, entityNum ) ) { return qfalse; } if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) ) { return qtrue; } return qfalse; } // returns true if another view has been rendered static qbool R_MirrorViewBySurface( drawSurf_t* drawSurf, int entityNum ) { viewParms_t newParms; viewParms_t oldParms; orientation_t surface, camera; // don't recursively mirror if (tr.viewParms.isPortal) { ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" ); return qfalse; } // r_fastsky's "mindless" blit over the entire screen will destroy portal views if ( r_fastsky->integer || r_noportals->integer ) { return qfalse; } // trivially reject portal/mirror if ( SurfIsOffscreen( drawSurf ) ) { return qfalse; } // save old viewParms so we can return to it after the mirror view oldParms = tr.viewParms; newParms = tr.viewParms; newParms.isPortal = qtrue; if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera, newParms.pvsOrigin, &newParms.isMirror ) ) { return qfalse; // bad portal, no portalentity } R_MirrorPoint( oldParms.orient.origin, &surface, &camera, newParms.orient.origin ); VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal ); newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal ); R_MirrorVector( oldParms.orient.axis[0], &surface, &camera, newParms.orient.axis[0] ); R_MirrorVector( oldParms.orient.axis[1], &surface, &camera, newParms.orient.axis[1] ); R_MirrorVector( oldParms.orient.axis[2], &surface, &camera, newParms.orient.axis[2] ); // OPTIMIZE: restrict the viewport on the mirrored view // render the mirror view R_RenderView( &newParms ); tr.viewParms = oldParms; return qtrue; } // see if a sprite is inside a fog volume static int R_SpriteFogNum( const trRefEntity_t* ent ) { int i, j; if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { return 0; } for ( i = 1 ; i < tr.world->numfogs ; i++ ) { const fog_t* fog = &tr.world->fogs[i]; for ( j = 0 ; j < 3 ; j++ ) { if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) { break; } if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) { break; } } if ( j == 3 ) { return i; } } return 0; } /* ========================================================================================== DRAWSURF SORTING ========================================================================================== */ /* =============== R_Radix =============== */ static ID_INLINE void R_Radix( int keyByte, int size, drawSurf_t *source, drawSurf_t *dest ) { int count[ 256 ] = { 0 }; int index[ 256 ]; int i; unsigned char *sortKey = NULL; unsigned char *end = NULL; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte; end = sortKey + ( size * sizeof( drawSurf_t ) ); for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) ) ++count[ *sortKey ]; index[ 0 ] = 0; for( i = 1; i < 256; ++i ) index[ i ] = index[ i - 1 ] + count[ i - 1 ]; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte; for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) ) dest[ index[ *sortKey ]++ ] = source[ i ]; } /* =============== R_RadixSort Radix sort with 4 byte size buckets =============== */ static void R_RadixSort( drawSurf_t *source, int size ) { static drawSurf_t scratch[ MAX_DRAWSURFS ]; #ifdef Q3_LITTLE_ENDIAN R_Radix( 0, size, source, scratch ); R_Radix( 1, size, scratch, source ); R_Radix( 2, size, source, scratch ); R_Radix( 3, size, scratch, source ); #else R_Radix( 3, size, source, scratch ); R_Radix( 2, size, scratch, source ); R_Radix( 1, size, source, scratch ); R_Radix( 0, size, scratch, source ); #endif //Q3_LITTLE_ENDIAN } // Philip Erdelsky gets all the credit for this one... static void R_SortLitsurfs( dlight_t* dl ) { struct litSurf_tape { litSurf_t *first, *last; unsigned count; } tape[4]; // distribute the records alternately to tape[0] and tape[1] tape[0].count = tape[1].count = 0; tape[0].first = tape[1].first = NULL; int base = 0; litSurf_t* p = dl->head; while (p) { litSurf_t* next = p->next; p->next = tape[base].first; tape[base].first = p; tape[base].count++; p = next; base ^= 1; } // merge from the two active tapes into the two idle ones // doubling the number of records and pingponging the tape sets as we go unsigned block_size = 1; for ( base = 0; tape[base+1].count; base ^= 2, block_size <<= 1 ) { litSurf_tape* tape0 = tape + base; litSurf_tape* tape1 = tape + base + 1; int dest = base ^ 2; tape[dest].count = tape[dest+1].count = 0; for (; tape0->count; dest ^= 1) { litSurf_tape* output_tape = tape + dest; unsigned n0, n1; n0 = n1 = block_size; while (1) { litSurf_tape* chosen_tape; if (n0 == 0 || tape0->count == 0) { if (n1 == 0 || tape1->count == 0) break; chosen_tape = tape1; n1--; } else if (n1 == 0 || tape1->count == 0) { chosen_tape = tape0; n0--; } else if (tape0->first->sort > tape1->first->sort) { chosen_tape = tape1; n1--; } else { chosen_tape = tape0; n0--; } chosen_tape->count--; p = chosen_tape->first; chosen_tape->first = p->next; if (output_tape->count == 0) output_tape->first = p; else output_tape->last->next = p; output_tape->last = p; output_tape->count++; } } } if (tape[base].count > 1) tape[base].last->next = NULL; dl->head = tape[base].first; } /////////////////////////////////////////////////////////////// void R_AddDrawSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex ) { // instead of checking for overflow, we just mask the index so it wraps around int index = tr.refdef.numDrawSurfs++ & DRAWSURF_MASK; // the sort data is packed into a single 32 bit value so it can be // compared quickly during the qsorting process tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT) | (shader->cullType << QSORT_CULLTYPE_SHIFT) | (shader->polygonOffset << QSORT_POLYOFF_SHIFT); tr.refdef.drawSurfs[index].surface = surface; } void R_AddLitSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex ) { tr.pc[RF_LIT_SURFS]++; int index = tr.refdef.numLitSurfs++ & DRAWSURF_MASK; litSurf_t* litsurf = &tr.refdef.litSurfs[index]; litsurf->sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT) | (shader->cullType << QSORT_CULLTYPE_SHIFT) | (shader->polygonOffset << QSORT_POLYOFF_SHIFT); litsurf->surface = surface; if (!tr.light->head) tr.light->head = litsurf; if (tr.light->tail) tr.light->tail->next = litsurf; tr.light->tail = litsurf; tr.light->tail->next = 0; } void R_DecomposeSort( unsigned sort, int *entityNum, const shader_t **shader, int *fogNum ) { *fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31; *shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ]; *entityNum = ( sort >> QSORT_ENTITYNUM_SHIFT ) & MAX_REFENTITIES; } static float R_ComputePointDepth( const vec3_t point, const float* modelMatrix ) { return -( modelMatrix[2 + 0 * 4] * point[0] + modelMatrix[2 + 1 * 4] * point[1] + modelMatrix[2 + 2 * 4] * point[2] + modelMatrix[2 + 3 * 4] ); } static float R_ComputeSurfaceDepth( const surfaceType_t* surf, int entityNum ) { if ( *surf == SF_ENTITY ) { const refEntity_t* ent = &tr.refdef.entities[entityNum].e; if ( ent->reType == RT_SPRITE ) return R_ComputePointDepth( ent->origin, tr.viewParms.world.modelMatrix ); if ( ent->reType == RT_LIGHTNING ) return -999666.0f; } return 999666.0f; } static int R_CompareDrawSurfDepth( const void* aPtr, const void* bPtr ) { const drawSurf_t* a = ( const drawSurf_t* )aPtr; const drawSurf_t* b = ( const drawSurf_t* )bPtr; if ( a->depth > b->depth ) return -1; if ( a->depth < b->depth ) return 1; return a->index - b->index; } static void R_SortDrawSurfs( int firstDrawSurf, int firstLitSurf ) { int numDrawSurfs = tr.refdef.numDrawSurfs - firstDrawSurf; drawSurf_t* drawSurfs = tr.refdef.drawSurfs + firstDrawSurf; const shader_t* shader; int fogNum; int entityNum; int i; // it is possible for some views to not have any surfaces if ( numDrawSurfs < 1 ) { // we still need to add it for hyperspace cases R_AddDrawSurfCmd( drawSurfs, 0, 0 ); return; } // if we overflowed MAX_DRAWSURFS, the drawsurfs // wrapped around in the buffer and we will be missing // the first surfaces, not the last ones if ( numDrawSurfs > MAX_DRAWSURFS ) { numDrawSurfs = MAX_DRAWSURFS; } // sort the drawsurfs by sort type, then shader, then entity, etc R_RadixSort( drawSurfs, numDrawSurfs ); // check for any pass through drawing, // which may cause another view to be rendered first for ( i = 0 ; i < numDrawSurfs ; i++ ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum ); if ( shader->sort > SS_PORTAL ) { break; } // no shader should ever have this sort type if ( shader->sort == SS_BAD ) { ri.Error( ERR_DROP, "Shader '%s' with sort == SS_BAD", shader->name ); } // if the mirror was completely clipped away, we may need to check another surface if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) { // this is a debug option to see exactly what is being mirrored if ( r_portalOnly->integer ) { return; } break; // only one mirror view at a time } } // compute the average camera depth of all transparent surfaces int numTranspSurfs = 0; for ( i = numDrawSurfs - 1; i >= 0; --i ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum ); if ( shader->sort <= SS_OPAQUE ) { numTranspSurfs = numDrawSurfs - i - 1; break; } drawSurfs[i].depth = R_ComputeSurfaceDepth( drawSurfs[i].surface, entityNum ); drawSurfs[i].index = i; } // sort transparent surfaces by depth qsort( drawSurfs + numDrawSurfs - numTranspSurfs, numTranspSurfs, sizeof(drawSurf_t), &R_CompareDrawSurfDepth ); // all the lit surfaces are in a single queue // but each light's surfaces are sorted within its subsection for ( i = 0; i < tr.refdef.num_dlights; ++i ) { dlight_t* dl = &tr.refdef.dlights[i]; if (dl->head) { R_SortLitsurfs( dl ); } } R_AddDrawSurfCmd( drawSurfs, numDrawSurfs, numTranspSurfs ); } // entities that will have procedurally generated surfaces will just // point at this for their sorting surface static const surfaceType_t entitySurface = SF_ENTITY; static void R_AddEntitySurfaces() { trRefEntity_t* ent; const shader_t* shader; if ( !r_drawentities->integer ) return; for (tr.currentEntityNum = 0; tr.currentEntityNum < tr.refdef.num_entities; ++tr.currentEntityNum) { ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum]; // preshift the value we are going to OR into the drawsurf sort tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT; // // the weapon model must be handled special -- // we don't want the hacked weapon position showing in mirrors, // because the true body position will already be drawn // if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal ) { continue; } // simple generated models, like sprites and beams, are not culled switch ( ent->e.reType ) { case RT_PORTALSURFACE: break; // don't draw anything case RT_SPRITE: case RT_LIGHTNING: // self blood sprites, talk balloons, etc should not be drawn in the primary // view. We can't just do this check for all entities, because md3 // entities may still want to cast shadows from them if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal ) { continue; } shader = R_GetShaderByHandle( ent->e.customShader ); R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ) ); break; case RT_MODEL: // we must set up parts of tr.or for model culling R_RotateForEntity( ent, &tr.viewParms, &tr.orient ); tr.currentModel = R_GetModelByHandle( ent->e.hModel ); if (!tr.currentModel) { R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 ); } else { switch ( tr.currentModel->type ) { case MOD_MD3: R_AddMD3Surfaces( ent ); break; case MOD_BRUSH: R_AddBrushModelSurfaces( ent ); break; case MOD_BAD: // null model axis if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) break; R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 ); break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" ); break; } } break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" ); } } } static void R_GenerateDrawSurfs() { R_AddWorldSurfaces(); R_AddPolygonSurfaces(); // set the projection matrix with the minimum zfar // now that we have the world bounded // this needs to be done before entities are added, // because they use the projection matrix for lod calculation R_SetupProjection(); R_AddEntitySurfaces(); } int re_cameraMatrixTime; // a view may be either the actual camera view, or a mirror / remote location void R_RenderView( const viewParms_t* parms ) { if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) return; tr.viewCount++; tr.viewParms = *parms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; int firstDrawSurf = tr.refdef.numDrawSurfs; int firstLitSurf = tr.refdef.numLitSurfs; // set viewParms.world re_cameraMatrixTime = Sys_Milliseconds(); R_RotateForViewer(); R_SetupFrustum(); R_GenerateDrawSurfs(); R_SortDrawSurfs( firstDrawSurf, firstLitSurf ); } const image_t* R_UpdateAndGetBundleImage( const textureBundle_t* bundle, updateAnimatedImage_t updateImage ) { if ( bundle->isVideoMap ) { ri.CIN_RunCinematic( bundle->videoMapHandle ); int w, h, client; const byte* data; qbool dirty; const qbool validData = ri.CIN_GrabCinematic( bundle->videoMapHandle, &w, &h, &data, &client, &dirty ); if ( client >= 0 && client < ARRAY_LEN( tr.scratchImage ) ) { image_t* const image = tr.scratchImage[client]; if ( validData ) (*updateImage)(image, w, h, data, dirty); return image; } else { return tr.whiteImage; } } if ( bundle->numImageAnimations <= 1 ) return bundle->image[0]; // it is necessary to do this messy calc to make sure animations line up // exactly with waveforms of the same frequency double v = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE; long long int index = v; index >>= FUNCTABLE_SHIFT; if ( index < 0 ) // may happen with shader time offsets return bundle->image[0]; return bundle->image[index % bundle->numImageAnimations]; }