/* =========================================================================== Copyright (C) 2024 Gian 'myT' Schellenbaum This file is part of Challenge Quake 3 (CNQ3). Challenge Quake 3 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Challenge Quake 3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Challenge Quake 3. If not, see . =========================================================================== */ // volumetric lighting: raymarch froxels #include "common.hlsli" #include "scene_view.h.hlsli" cbuffer RootConstants { uint scatterTextureIndex; uint resolveTextureIndex; uint materialTextureBIndex; } [numthreads(8, 8, 1)] void cs(uint3 id : SV_DispatchThreadID) { RWTexture3D scatterTexture = ResourceDescriptorHeap[scatterTextureIndex]; uint3 textureSize = GetTextureSize(scatterTexture); if(any(id.xy >= textureSize.xy)) { return; } // Even if the extinction coefficient is constant all along a given line segment of length Z, // the transmittance is different at every point. // We compute the final scatter/emissive using an analytical solution like Frostbite does. // Integral(T(x) * dx) == Integral(e^(-extinction*x) * dZ) [0 to Z] // == [e^(-extinction*x) / (-extinction)] [0 to Z] // == (-1 / extinction) * [e^(-Z*extinction)] [0 to Z] // == (-1 / extinction) * [T(Z)] [0 to Z] // == (-1 / extinction) * (T(Z) - T(0)) // == (-1 / extinction) * (T(Z) - 1) // == (1 / extinction) * (1 - T(Z)) // == (1 - T(Z)) / extinction // The scatter/emissive coefficients are considered uniform in each froxel. // They are therefore constants that can be pulled out of the integral, hence their omission. SceneView scene = GetSceneView(); RWTexture3D resolveTexture = ResourceDescriptorHeap[resolveTextureIndex]; RWTexture3D materialTextureB = ResourceDescriptorHeap[materialTextureBIndex]; uint3 index0 = uint3(id.xy, 0); float3 tc0 = (float3(index0) + float3(0.5, 0.5, 0)) / textureSize; // near edge of first voxel float3 prevPosition = scene.FroxelTCToWorldSpace(tc0, float3(textureSize)); float3 accumScatter = float3(0, 0, 0); float accumTrans = 1.0; for(uint d = 0; d < textureSize.z; d++) { uint3 index = uint3(id.xy, d); float3 tc = (float3(index) + float3(0.5, 0.5, 1)) / textureSize; // far edge of current voxel float4 froxelScatterExt = scatterTexture[index]; float3 froxelEmissive = materialTextureB[index].rgb; float3 froxelScatter = froxelScatterExt.rgb; float froxelExtinction = froxelScatterExt.a; float3 currPosition = scene.FroxelTCToWorldSpace(tc, float3(textureSize)); float depthStep = distance(currPosition, prevPosition); float froxelTrans = Transmittance(depthStep, froxelExtinction); float froxelTransInteg = (1.0 - froxelTrans) / (froxelExtinction == 0.0 ? 1.0 : froxelExtinction); accumScatter += (accumTrans * froxelTransInteg) * (froxelScatter + froxelEmissive); accumTrans *= froxelTrans; resolveTexture[index] = float4(accumScatter, accumTrans); prevPosition = currPosition; } }