/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_main.c -- main control flow for each frame #include "tr_local.h" trGlobals_t tr; refimport_t ri; const float s_flipMatrix[16] = { // convert from our coordinate system (looking down X) // to the back-end's coordinate system (looking down -Z) 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 }; static void R_LocalPointToWorld( const vec3_t local, vec3_t world ) { world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0] + tr.orient.origin[0]; world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1] + tr.orient.origin[1]; world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2] + tr.orient.origin[2]; } static void R_LocalNormalToWorld( const vec3_t local, vec3_t world ) { world[0] = local[0] * tr.orient.axis[0][0] + local[1] * tr.orient.axis[1][0] + local[2] * tr.orient.axis[2][0]; world[1] = local[0] * tr.orient.axis[0][1] + local[1] * tr.orient.axis[1][1] + local[2] * tr.orient.axis[2][1]; world[2] = local[0] * tr.orient.axis[0][2] + local[1] * tr.orient.axis[1][2] + local[2] * tr.orient.axis[2][2]; } // returns CULL_IN, CULL_CLIP, or CULL_OUT int R_CullLocalBox( const vec3_t bounds[2] ) { int i, j; vec3_t transformed[8]; float dists[8]; vec3_t v; cplane_t *frust; int anyBack; int front, back; if ( r_nocull->integer ) { return CULL_CLIP; } // transform into world space for (i = 0 ; i < 8 ; i++) { v[0] = bounds[i&1][0]; v[1] = bounds[(i>>1)&1][1]; v[2] = bounds[(i>>2)&1][2]; VectorCopy( tr.orient.origin, transformed[i] ); VectorMA( transformed[i], v[0], tr.orient.axis[0], transformed[i] ); VectorMA( transformed[i], v[1], tr.orient.axis[1], transformed[i] ); VectorMA( transformed[i], v[2], tr.orient.axis[2], transformed[i] ); } // check against frustum planes anyBack = 0; for (i = 0 ; i < 4 ; i++) { frust = &tr.viewParms.frustum[i]; front = back = 0; for (j = 0 ; j < 8 ; j++) { dists[j] = DotProduct(transformed[j], frust->normal); if ( dists[j] > frust->dist ) { front = 1; if ( back ) { break; // a point is in front } } else { back = 1; } } if ( !front ) { // all points were behind one of the planes return CULL_OUT; } anyBack |= back; } if ( !anyBack ) { return CULL_IN; // completely inside frustum } return CULL_CLIP; // partially clipped } int R_CullPointAndRadius( const vec3_t pt, float radius ) { qbool mightBeClipped = qfalse; if ( r_nocull->integer ) { return CULL_CLIP; } // check against frustum planes for (int i = 0; i < 4; ++i) { const cplane_t* frust = &tr.viewParms.frustum[i]; float dist = DotProduct( pt, frust->normal) - frust->dist; if ( dist < -radius ) { return CULL_OUT; } else if ( dist <= radius ) { mightBeClipped = qtrue; } } if ( mightBeClipped ) { return CULL_CLIP; } return CULL_IN; // completely inside frustum } int R_CullLocalPointAndRadius( const vec3_t pt, float radius ) { vec3_t transformed; R_LocalPointToWorld( pt, transformed ); return R_CullPointAndRadius( transformed, radius ); } /* ========================== R_TransformModelToClip ========================== */ void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix, vec4_t eye, vec4_t dst ) { int i; for ( i = 0 ; i < 4 ; i++ ) { eye[i] = src[0] * modelMatrix[ i + 0 * 4 ] + src[1] * modelMatrix[ i + 1 * 4 ] + src[2] * modelMatrix[ i + 2 * 4 ] + 1 * modelMatrix[ i + 3 * 4 ]; } for ( i = 0 ; i < 4 ; i++ ) { dst[i] = eye[0] * projectionMatrix[ i + 0 * 4 ] + eye[1] * projectionMatrix[ i + 1 * 4 ] + eye[2] * projectionMatrix[ i + 2 * 4 ] + eye[3] * projectionMatrix[ i + 3 * 4 ]; } } /* ========================== R_TransformClipToWindow ========================== */ void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) { normalized[0] = clip[0] / clip[3]; normalized[1] = clip[1] / clip[3]; normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] ); window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth; window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight; window[2] = normalized[2]; window[0] = (int) ( window[0] + 0.5 ); window[1] = (int) ( window[1] + 0.5 ); } void R_MultMatrix( const float *a, const float *b, float *out ) { for ( int i = 0 ; i < 4 ; i++ ) { for ( int j = 0 ; j < 4 ; j++ ) { out[ i * 4 + j ] = a [ i * 4 + 0 ] * b [ 0 * 4 + j ] + a [ i * 4 + 1 ] * b [ 1 * 4 + j ] + a [ i * 4 + 2 ] * b [ 2 * 4 + j ] + a [ i * 4 + 3 ] * b [ 3 * 4 + j ]; } } } void R_MakeIdentityMatrix( float* m ) { m[ 0] = 1.0f; m[ 1] = 0.0f; m[ 2] = 0.0f; m[ 3] = 0.0f; m[ 4] = 0.0f; m[ 5] = 1.0f; m[ 6] = 0.0f; m[ 7] = 0.0f; m[ 8] = 0.0f; m[ 9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; } void R_MakeOrthoProjectionMatrix( float* m, float w, float h ) { // 2/(r-l) 0 0 0 // 0 2/(t-b) 0 0 // 0 0 1/(zf-zn) 0 // (l+r)/(l-r) (t+b)/(b-t) zn/(zn-zf) 1 const float n = 0.0f; const float f = 2.0f; m[ 0] = 2.0f / w; m[ 4] = 0.0f; m[ 8] = 0.0f; m[12] = -1.0f; m[ 1] = 0.0f; m[ 5] = -2.0f / h; m[ 9] = 0.0f; m[13] = 1.0f; m[ 2] = 0.0f; m[ 6] = 0.0f; m[10] = 1.0f / (f - n); m[14] = 0.0f; m[ 3] = 0.0f; m[ 7] = 0.0f; m[11] = n / (n - f); m[15] = 1.0f; } /* ================= R_RotateForEntity Generates an orientation for an entity and viewParms Does NOT produce any GL calls Called by both the front end and the back end ================= */ void R_RotateForEntity( const trRefEntity_t* ent, const viewParms_t* viewParms, orientationr_t* orient ) { float glMatrix[16]; vec3_t delta; float axisLength; if ( ent->e.reType != RT_MODEL ) { *orient = viewParms->world; return; } VectorCopy( ent->e.origin, orient->origin ); VectorCopy( ent->e.axis[0], orient->axis[0] ); VectorCopy( ent->e.axis[1], orient->axis[1] ); VectorCopy( ent->e.axis[2], orient->axis[2] ); glMatrix[0] = orient->axis[0][0]; glMatrix[4] = orient->axis[1][0]; glMatrix[8] = orient->axis[2][0]; glMatrix[12] = orient->origin[0]; glMatrix[1] = orient->axis[0][1]; glMatrix[5] = orient->axis[1][1]; glMatrix[9] = orient->axis[2][1]; glMatrix[13] = orient->origin[1]; glMatrix[2] = orient->axis[0][2]; glMatrix[6] = orient->axis[1][2]; glMatrix[10] = orient->axis[2][2]; glMatrix[14] = orient->origin[2]; glMatrix[3] = 0; glMatrix[7] = 0; glMatrix[11] = 0; glMatrix[15] = 1; R_MultMatrix( glMatrix, viewParms->world.modelMatrix, orient->modelMatrix ); // calculate the viewer origin in the model's space // needed for fog, specular, and environment mapping VectorSubtract( viewParms->orient.origin, orient->origin, delta ); // compensate for scale in the axes if necessary if ( ent->e.nonNormalizedAxes ) { axisLength = VectorLength( ent->e.axis[0] ); if ( !axisLength ) { axisLength = 0; } else { axisLength = 1.0f / axisLength; } } else { axisLength = 1.0f; } orient->viewOrigin[0] = DotProduct( delta, orient->axis[0] ) * axisLength; orient->viewOrigin[1] = DotProduct( delta, orient->axis[1] ) * axisLength; orient->viewOrigin[2] = DotProduct( delta, orient->axis[2] ) * axisLength; } // sets up the modelview matrix for a given viewParm static void R_RotateForViewer() { float viewerMatrix[16]; vec3_t origin; Com_Memset( &tr.orient, 0, sizeof(tr.orient) ); tr.orient.axis[0][0] = 1; tr.orient.axis[1][1] = 1; tr.orient.axis[2][2] = 1; VectorCopy( tr.viewParms.orient.origin, tr.orient.viewOrigin ); // transform by the camera placement VectorCopy( tr.viewParms.orient.origin, origin ); viewerMatrix[0] = tr.viewParms.orient.axis[0][0]; viewerMatrix[4] = tr.viewParms.orient.axis[0][1]; viewerMatrix[8] = tr.viewParms.orient.axis[0][2]; viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8]; viewerMatrix[1] = tr.viewParms.orient.axis[1][0]; viewerMatrix[5] = tr.viewParms.orient.axis[1][1]; viewerMatrix[9] = tr.viewParms.orient.axis[1][2]; viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9]; viewerMatrix[2] = tr.viewParms.orient.axis[2][0]; viewerMatrix[6] = tr.viewParms.orient.axis[2][1]; viewerMatrix[10] = tr.viewParms.orient.axis[2][2]; viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10]; viewerMatrix[3] = 0; viewerMatrix[7] = 0; viewerMatrix[11] = 0; viewerMatrix[15] = 1; // convert from our coordinate system (looking down X) // to the back-end's coordinate system (looking down -Z) R_MultMatrix( viewerMatrix, s_flipMatrix, tr.orient.modelMatrix ); tr.viewParms.world = tr.orient; } static void SetFarClip() { // if not rendering the world (icons, menus, etc) // set a 2k far clip plane if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { tr.viewParms.zFar = 2048; return; } // set far clipping plane dynamically float farthestCornerDistance = 0; for (int i = 0; i < 8; ++i) { vec3_t v; v[0] = (i & 1) ? tr.viewParms.visBounds[0][0] : tr.viewParms.visBounds[1][0]; v[1] = (i & 2) ? tr.viewParms.visBounds[0][1] : tr.viewParms.visBounds[1][1]; v[2] = (i & 4) ? tr.viewParms.visBounds[0][2] : tr.viewParms.visBounds[1][2]; float d = DistanceSquared( v, tr.viewParms.orient.origin ); if ( d > farthestCornerDistance ) { farthestCornerDistance = d; } } tr.viewParms.zFar = sqrt( farthestCornerDistance ); } static void R_SetupProjection() { float width, height, depth; float zNear, zFar; // dynamically compute far clip plane distance SetFarClip(); // // set up projection matrix // zNear = 4.0f; zFar = tr.viewParms.zFar; height = 2.0f * zNear * tan( tr.refdef.fov_y * M_PI / 360.0f ); width = 2.0f * zNear * tan( tr.refdef.fov_x * M_PI / 360.0f ); depth = zFar - zNear; tr.viewParms.projectionMatrix[0] = 2 * zNear / width; tr.viewParms.projectionMatrix[4] = 0; tr.viewParms.projectionMatrix[8] = 0; tr.viewParms.projectionMatrix[12] = 0; tr.viewParms.projectionMatrix[1] = 0; tr.viewParms.projectionMatrix[5] = 2 * zNear / height; tr.viewParms.projectionMatrix[9] = 0; tr.viewParms.projectionMatrix[13] = 0; tr.viewParms.projectionMatrix[2] = 0; tr.viewParms.projectionMatrix[6] = 0; tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth; tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth; tr.viewParms.projectionMatrix[3] = 0; tr.viewParms.projectionMatrix[7] = 0; tr.viewParms.projectionMatrix[11] = -1; tr.viewParms.projectionMatrix[15] = 0; } // set up the culling frustum planes for the current view static void R_SetupFrustum() { float ang, xs, xc; ang = tr.viewParms.fovX / 180 * M_PI * 0.5f; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[0].normal ); VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[0].normal ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[1].normal ); VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.orient.axis[1], tr.viewParms.frustum[1].normal ); ang = tr.viewParms.fovY / 180 * M_PI * 0.5f; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[2].normal ); VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[2].normal ); VectorScale( tr.viewParms.orient.axis[0], xs, tr.viewParms.frustum[3].normal ); VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.orient.axis[2], tr.viewParms.frustum[3].normal ); for (int i = 0; i < 4; ++i) { tr.viewParms.frustum[i].type = PLANE_NON_AXIAL; tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.orient.origin, tr.viewParms.frustum[i].normal); SetPlaneSignbits( &tr.viewParms.frustum[i] ); } } static void R_MirrorPoint( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out ) { int i; vec3_t local; vec3_t transformed; float d; VectorSubtract( in, surface->origin, local ); VectorClear( transformed ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct( local, surface->axis[i] ); VectorMA( transformed, d, camera->axis[i], transformed ); } VectorAdd( transformed, camera->origin, out ); } static void R_MirrorVector( const vec3_t in, const orientation_t* surface, const orientation_t* camera, vec3_t out ) { int i; float d; VectorClear( out ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct( in, surface->axis[i] ); VectorMA( out, d, camera->axis[i], out ); } } static void R_PlaneForSurface( const surfaceType_t* surfType, cplane_t* plane ) { vec4_t plane4; if (!surfType) { Com_Memset( plane, 0, sizeof(*plane) ); plane->normal[0] = 1; return; } switch (*surfType) { case SF_FACE: *plane = ((const srfSurfaceFace_t*)surfType)->plane; return; case SF_TRIANGLES: { const srfTriangles_t* tri = (const srfTriangles_t*)surfType; const srfVert_t* v1 = tri->verts + tri->indexes[0]; const srfVert_t* v2 = tri->verts + tri->indexes[1]; const srfVert_t* v3 = tri->verts + tri->indexes[2]; PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; } return; case SF_POLY: { const srfPoly_t* poly = (const srfPoly_t*)surfType; PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; } return; default: Com_Memset( plane, 0, sizeof(*plane) ); plane->normal[0] = 1; return; } } /* ================= R_GetPortalOrientation entityNum is the entity that the portal surface is a part of, which may be moving and rotating. Returns qtrue if it should be mirrored ================= */ qbool R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum, orientation_t *surface, orientation_t *camera, vec3_t pvsOrigin, qbool *mirror ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; vec3_t transformed; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != ENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin ); } else { plane = originalPlane; } VectorCopy( plane.normal, surface->axis[0] ); PerpendicularVector( surface->axis[1], surface->axis[0] ); CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] ); // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // get the pvsOrigin from the entity VectorCopy( e->e.oldorigin, pvsOrigin ); // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { VectorScale( plane.normal, plane.dist, surface->origin ); VectorCopy( surface->origin, camera->origin ); VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] ); VectorCopy( surface->axis[1], camera->axis[1] ); VectorCopy( surface->axis[2], camera->axis[2] ); *mirror = qtrue; return qtrue; } // project the origin onto the surface plane to get // an origin point we can rotate around d = DotProduct( e->e.origin, plane.normal ) - plane.dist; VectorMA( e->e.origin, -d, surface->axis[0], surface->origin ); // now get the camera origin and orientation VectorCopy( e->e.oldorigin, camera->origin ); AxisCopy( e->e.axis, camera->axis ); VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] ); VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] ); // optionally rotate if ( e->e.oldframe ) { // if a speed is specified if ( e->e.frame ) { // continuous rotate d = (tr.refdef.time/1000.0f) * e->e.frame; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } else { // bobbing rotate, with skinNum being the rotation offset d = sin( tr.refdef.time * 0.003f ); d = e->e.skinNum + d * 4; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } } else if ( e->e.skinNum ) { d = e->e.skinNum; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } *mirror = qfalse; return qtrue; } // if we didn't locate a portal entity, don't render anything. // We don't want to just treat it as a mirror, because without a // portal entity the server won't have communicated a proper entity set // in the snapshot // unfortunately, with local movement prediction it is easily possible // to see a surface before the server has communicated the matching // portal surface entity, so we don't want to print anything here... //ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" ); return qfalse; } static qbool IsMirror( const drawSurf_t *drawSurf, int entityNum ) { int i; cplane_t originalPlane, plane; float d; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != ENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.orient ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.orient.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.orient.origin ); } else { plane = originalPlane; } // locate the portal entity closest to this plane. // origin will be the origin of the portal, // oldorigin will be the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { const trRefEntity_t* e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // if the entity is just a mirror, don't use as a camera point return VectorCompare( e->e.origin, e->e.oldorigin ); } return qfalse; } // determines if a surface is COMPLETELY offscreen static qbool SurfIsOffscreen( const drawSurf_t* drawSurf ) { float shortest = 100000000; int entityNum; int numTriangles; const shader_t *shader; int fogNum; vec4_t clip, eye; int i; unsigned int pointAnd = (unsigned int)~0; R_RotateForViewer(); R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum ); RB_BeginSurface( shader, fogNum ); rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface ); assert( tess.numVertexes < 128 ); for ( i = 0; i < tess.numVertexes; i++ ) { int j; unsigned int pointFlags = 0; R_TransformModelToClip( tess.xyz[i], tr.orient.modelMatrix, tr.viewParms.projectionMatrix, eye, clip ); for ( j = 0; j < 3; j++ ) { if ( clip[j] >= clip[3] ) { pointFlags |= (1 << (j*2)); } else if ( clip[j] <= -clip[3] ) { pointFlags |= ( 1 << (j*2+1)); } } pointAnd &= pointFlags; } // trivially reject if ( pointAnd ) { return qtrue; } // determine if this surface is backfaced and also determine the distance // to the nearest vertex so we can cull based on portal range. Culling // based on vertex distance isn't 100% correct (we should be checking for // range to the surface), but it's good enough for the types of portals // we have in the game right now. numTriangles = tess.numIndexes / 3; for ( i = 0; i < tess.numIndexes; i += 3 ) { vec3_t normal; float dot; float len; VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.orient.origin, normal ); len = VectorLengthSquared( normal ); // lose the sqrt if ( len < shortest ) { shortest = len; } if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 ) { numTriangles--; } } if ( !numTriangles ) { return qtrue; } // mirrors can early out at this point, since we don't do a fade over distance // with them (although we could) if ( IsMirror( drawSurf, entityNum ) ) { return qfalse; } if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) ) { return qtrue; } return qfalse; } // returns true if another view has been rendered static qbool R_MirrorViewBySurface( drawSurf_t* drawSurf, int entityNum ) { viewParms_t newParms; viewParms_t oldParms; orientation_t surface, camera; // don't recursively mirror if (tr.viewParms.isPortal) { ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" ); return qfalse; } // r_fastsky's "mindless" blit over the entire screen will destroy portal views if ( r_fastsky->integer || r_noportals->integer ) { return qfalse; } // trivially reject portal/mirror if ( SurfIsOffscreen( drawSurf ) ) { return qfalse; } // save old viewParms so we can return to it after the mirror view oldParms = tr.viewParms; newParms = tr.viewParms; newParms.isPortal = qtrue; if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera, newParms.pvsOrigin, &newParms.isMirror ) ) { return qfalse; // bad portal, no portalentity } R_MirrorPoint( oldParms.orient.origin, &surface, &camera, newParms.orient.origin ); VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal ); newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal ); R_MirrorVector( oldParms.orient.axis[0], &surface, &camera, newParms.orient.axis[0] ); R_MirrorVector( oldParms.orient.axis[1], &surface, &camera, newParms.orient.axis[1] ); R_MirrorVector( oldParms.orient.axis[2], &surface, &camera, newParms.orient.axis[2] ); // OPTIMIZE: restrict the viewport on the mirrored view // render the mirror view R_RenderView( &newParms ); tr.viewParms = oldParms; return qtrue; } // see if a sprite is inside a fog volume static int R_SpriteFogNum( const trRefEntity_t* ent ) { int i, j; if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { return 0; } for ( i = 1 ; i < tr.world->numfogs ; i++ ) { const fog_t* fog = &tr.world->fogs[i]; for ( j = 0 ; j < 3 ; j++ ) { if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) { break; } if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) { break; } } if ( j == 3 ) { return i; } } return 0; } /* ========================================================================================== DRAWSURF SORTING ========================================================================================== */ /* =============== R_Radix =============== */ static ID_INLINE void R_Radix( int keyByte, int size, drawSurf_t *source, drawSurf_t *dest ) { int count[ 256 ] = { 0 }; int index[ 256 ]; int i; unsigned char *sortKey = NULL; unsigned char *end = NULL; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte; end = sortKey + ( size * sizeof( drawSurf_t ) ); for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) ) ++count[ *sortKey ]; index[ 0 ] = 0; for( i = 1; i < 256; ++i ) index[ i ] = index[ i - 1 ] + count[ i - 1 ]; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + keyByte; for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) ) dest[ index[ *sortKey ]++ ] = source[ i ]; } /* =============== R_RadixSort Radix sort with 4 byte size buckets =============== */ static void R_RadixSort( drawSurf_t *source, int size ) { static drawSurf_t scratch[ MAX_DRAWSURFS ]; #ifdef Q3_LITTLE_ENDIAN R_Radix( 0, size, source, scratch ); R_Radix( 1, size, scratch, source ); R_Radix( 2, size, source, scratch ); R_Radix( 3, size, scratch, source ); #else R_Radix( 3, size, source, scratch ); R_Radix( 2, size, scratch, source ); R_Radix( 1, size, source, scratch ); R_Radix( 0, size, scratch, source ); #endif //Q3_LITTLE_ENDIAN } // Philip Erdelsky gets all the credit for this one... static void R_SortLitsurfs( dlight_t* dl ) { struct litSurf_tape { litSurf_t *first, *last; unsigned count; } tape[4]; // distribute the records alternately to tape[0] and tape[1] tape[0].count = tape[1].count = 0; tape[0].first = tape[1].first = NULL; int base = 0; litSurf_t* p = dl->head; while (p) { litSurf_t* next = p->next; p->next = tape[base].first; tape[base].first = p; tape[base].count++; p = next; base ^= 1; } // merge from the two active tapes into the two idle ones // doubling the number of records and pingponging the tape sets as we go unsigned block_size = 1; for ( base = 0; tape[base+1].count; base ^= 2, block_size <<= 1 ) { litSurf_tape* tape0 = tape + base; litSurf_tape* tape1 = tape + base + 1; int dest = base ^ 2; tape[dest].count = tape[dest+1].count = 0; for (; tape0->count; dest ^= 1) { litSurf_tape* output_tape = tape + dest; unsigned n0, n1; n0 = n1 = block_size; while (1) { litSurf_tape* chosen_tape; if (n0 == 0 || tape0->count == 0) { if (n1 == 0 || tape1->count == 0) break; chosen_tape = tape1; n1--; } else if (n1 == 0 || tape1->count == 0) { chosen_tape = tape0; n0--; } else if (tape0->first->sort > tape1->first->sort) { chosen_tape = tape1; n1--; } else { chosen_tape = tape0; n0--; } chosen_tape->count--; p = chosen_tape->first; chosen_tape->first = p->next; if (output_tape->count == 0) output_tape->first = p; else output_tape->last->next = p; output_tape->last = p; output_tape->count++; } } } if (tape[base].count > 1) tape[base].last->next = NULL; dl->head = tape[base].first; } /////////////////////////////////////////////////////////////// void R_AddDrawSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex ) { // instead of checking for overflow, we just mask the index so it wraps around const int index = tr.refdef.numDrawSurfs++ & DRAWSURF_MASK; // the sort data is packed into a single 32 bit value so it can be // compared quickly during the qsorting process tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT) | ((shader->dfType != DFT_NONE) << QSORT_DEPTHFADE_SHIFT) | (shader->polygonOffset << QSORT_POLYOFF_SHIFT); tr.refdef.drawSurfs[index].surface = surface; tr.refdef.drawSurfs[index].model = tr.currentModel != NULL ? tr.currentModel->index : 0; } void R_AddLitSurf( const surfaceType_t* surface, const shader_t* shader, int fogIndex ) { tr.pc[RF_LIT_SURFS]++; int index = tr.refdef.numLitSurfs++ & DRAWSURF_MASK; litSurf_t* litsurf = &tr.refdef.litSurfs[index]; litsurf->sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | (fogIndex << QSORT_FOGNUM_SHIFT) | ((shader->dfType != DFT_NONE) << QSORT_DEPTHFADE_SHIFT) | (shader->polygonOffset << QSORT_POLYOFF_SHIFT); litsurf->surface = surface; if (!tr.light->head) tr.light->head = litsurf; if (tr.light->tail) tr.light->tail->next = litsurf; tr.light->tail = litsurf; tr.light->tail->next = 0; } void R_DecomposeSort( unsigned sort, int *entityNum, const shader_t **shader, int *fogNum ) { *fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31; *shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ]; *entityNum = ( sort >> QSORT_ENTITYNUM_SHIFT ) & MAX_REFENTITIES; } static float R_ComputePointDepth( const vec3_t point, const float* modelMatrix ) { return -( modelMatrix[2 + 0 * 4] * point[0] + modelMatrix[2 + 1 * 4] * point[1] + modelMatrix[2 + 2 * 4] * point[2] + modelMatrix[2 + 3 * 4] ); } static float R_ComputeEntityPointDepth( const vec3_t point, int entityNum ) { orientationr_t orient; if ( entityNum != ENTITYNUM_WORLD ) R_RotateForEntity( &tr.refdef.entities[entityNum], &tr.viewParms, &orient ); else orient = tr.viewParms.world; return R_ComputePointDepth( point, orient.modelMatrix ); } static float R_ComputeSurfaceDepth( const surfaceType_t* surf, int entityNum, qhandle_t model ) { const float back = 999666.0f; const float front = -999666.0f; if ( *surf == SF_ENTITY ) { const refEntity_t* const ent = &tr.refdef.entities[entityNum].e; if ( ent->reType == RT_SPRITE ) // CPMA: simple items, rocket explosions, ... return R_ComputeEntityPointDepth( ent->origin, entityNum ); if ( ent->reType == RT_LIGHTNING ) // CPMA: first-person lightning gun beam return front; // note that RT_MODEL not being checked isn't an omission, it's not needed return back; } if ( *surf == SF_POLY ) { // CPMA: impact marks, rocket smoke, ... const srfPoly_t* const poly = (const srfPoly_t*)surf; return R_ComputeEntityPointDepth( poly->localOrigin, entityNum ); } if ( *surf == SF_MD3 ) { // CPMA: spawn points, rocket projectiles, ... vec3_t mins, maxs, midPoint; R_ModelBounds( model, mins, maxs ); VectorAdd( mins, maxs, midPoint ); VectorScale( midPoint, 0.5f, midPoint ); return R_ComputeEntityPointDepth( midPoint, entityNum ); } // If we don't sort them, we let "static" surfaces be drawn behind the "dynamic" ones. // This helps avoid inconsistent-looking results like CPMA simple items and // large enough transparent liquid pools (e.g. dropped weapons in the cpm18r acid). if ( r_transpSort->integer == 0 ) return back; if ( *surf == SF_FACE ) { // cpm25 water const srfSurfaceFace_t* const face = (const srfSurfaceFace_t*)surf; return R_ComputeEntityPointDepth( face->localOrigin, entityNum ); } if ( *surf == SF_GRID ) { // hektik_b3 item markers const srfGridMesh_t* const grid = (const srfGridMesh_t*)surf; return R_ComputeEntityPointDepth( grid->localOrigin, entityNum ); } if ( *surf == SF_TRIANGLES ) { // cpm18r acid const srfTriangles_t* const tri = (const srfTriangles_t*)surf; return R_ComputeEntityPointDepth( tri->localOrigin, entityNum ); } return back; } /* A few notes on transparency handling: a) User-specified blend modes and user-created data mean we can't robustly substitute blend modes with better alternatives that are commutative (e.g. pre-multiplied alpha instead of the "standard" blend). The amount of corner cases to handle would be a headache and textures would need to be modified. I'm not even sure if it's possible. I'd gladly be proven wrong, though. b) The code currently sorts surfaces (triangle groups) back to front. Sorting individual triangles would obviously be better for many scenarios, but it would still not be correct at all times (e.g. intersecting triangles, 3-way overlaps). c) What we really want is true order-independent transparency (OIT). There are numerous techniques, but this 2-step method is the most promising avenue: 1. Render transparent surfaces into per-pixel linked lists. 2. Do a single "full-screen" pass which sorts and resolves each pixel's list. This requires support for atomic shader operations. When atomic shader operations are not available, we could fall back to: - The current approach. - Per-pixel fixed-size arrays (there are several methods). - Depth peeling (there are also several methods). */ static int R_CompareDrawSurfDepth( const void* aPtr, const void* bPtr ) { const drawSurf_t* a = ( const drawSurf_t* )aPtr; const drawSurf_t* b = ( const drawSurf_t* )bPtr; if ( a->depth > b->depth ) return -1; if ( a->depth < b->depth ) return 1; return a->index - b->index; } static void R_SortDrawSurfs( int firstDrawSurf, int firstLitSurf ) { int numDrawSurfs = tr.refdef.numDrawSurfs - firstDrawSurf; drawSurf_t* drawSurfs = tr.refdef.drawSurfs + firstDrawSurf; const shader_t* shader; int fogNum; int entityNum; int i; // it is possible for some views to not have any surfaces if ( numDrawSurfs < 1 ) { // we still need to add it for hyperspace cases R_AddDrawSurfCmd( drawSurfs, 0, 0 ); return; } // if we overflowed MAX_DRAWSURFS, the drawsurfs // wrapped around in the buffer and we will be missing // the first surfaces, not the last ones if ( numDrawSurfs > MAX_DRAWSURFS ) { numDrawSurfs = MAX_DRAWSURFS; } // sort the drawsurfs by sort type, then shader, then entity, etc R_RadixSort( drawSurfs, numDrawSurfs ); // check for any pass through drawing, // which may cause another view to be rendered first for ( i = 0 ; i < numDrawSurfs ; i++ ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum ); if ( shader->sort > SS_PORTAL ) { break; } // no shader should ever have this sort type if ( shader->sort == SS_BAD ) { ri.Error( ERR_DROP, "Shader '%s' with sort == SS_BAD", shader->name ); } // if the mirror was completely clipped away, we may need to check another surface if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) { // this is a debug option to see exactly what is being mirrored if ( r_portalOnly->integer ) { return; } break; // only one mirror view at a time } } // compute the average camera depth of all transparent surfaces int numTranspSurfs = 0; for ( i = numDrawSurfs - 1; i >= 0; --i ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum ); if ( shader->sort <= SS_OPAQUE ) { numTranspSurfs = numDrawSurfs - i - 1; break; } drawSurfs[i].depth = R_ComputeSurfaceDepth( drawSurfs[i].surface, entityNum, drawSurfs[i].model ); drawSurfs[i].index = i; } // sort transparent surfaces by depth qsort( drawSurfs + numDrawSurfs - numTranspSurfs, numTranspSurfs, sizeof(drawSurf_t), &R_CompareDrawSurfDepth ); // all the lit surfaces are in a single queue // but each light's surfaces are sorted within its subsection for ( i = 0; i < tr.refdef.num_dlights; ++i ) { dlight_t* dl = &tr.refdef.dlights[i]; if (dl->head) { R_SortLitsurfs( dl ); } } R_AddDrawSurfCmd( drawSurfs, numDrawSurfs, numTranspSurfs ); } // entities that will have procedurally generated surfaces will just // point at this for their sorting surface static const surfaceType_t entitySurface = SF_ENTITY; static void R_AddEntitySurfaces() { trRefEntity_t* ent; const shader_t* shader; if ( !r_drawentities->integer ) return; for (tr.currentEntityNum = 0; tr.currentEntityNum < tr.refdef.num_entities; ++tr.currentEntityNum) { ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum]; // preshift the value we are going to OR into the drawsurf sort tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT; // // the weapon model must be handled special -- // we don't want the hacked weapon position showing in mirrors, // because the true body position will already be drawn // if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal ) { continue; } // simple generated models, like sprites and beams, are not culled switch ( ent->e.reType ) { case RT_PORTALSURFACE: break; // don't draw anything case RT_SPRITE: case RT_LIGHTNING: // self blood sprites, talk balloons, etc should not be drawn in the primary // view. We can't just do this check for all entities, because md3 // entities may still want to cast shadows from them if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal ) { continue; } shader = R_GetShaderByHandle( ent->e.customShader ); R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ) ); break; case RT_MODEL: // we must set up parts of tr.orient for model culling R_RotateForEntity( ent, &tr.viewParms, &tr.orient ); tr.currentModel = R_GetModelByHandle( ent->e.hModel ); if (!tr.currentModel) { R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 ); } else { switch ( tr.currentModel->type ) { case MOD_MD3: R_AddMD3Surfaces( ent ); break; case MOD_BRUSH: R_AddBrushModelSurfaces( ent ); break; case MOD_BAD: // null model axis if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) break; R_AddDrawSurf( &entitySurface, tr.defaultShader, 0 ); break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" ); break; } } break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" ); } } } static void R_GenerateDrawSurfs() { R_AddWorldSurfaces(); R_AddPolygonSurfaces(); // set the projection matrix with the minimum zfar // now that we have the world bounded // this needs to be done before entities are added, // because they use the projection matrix for lod calculation R_SetupProjection(); R_AddEntitySurfaces(); } int re_cameraMatrixTime; // a view may be either the actual camera view, or a mirror / remote location void R_RenderView( const viewParms_t* parms ) { if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) return; tr.viewCount++; tr.viewParms = *parms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; int firstDrawSurf = tr.refdef.numDrawSurfs; int firstLitSurf = tr.refdef.numLitSurfs; // set viewParms.world re_cameraMatrixTime = Sys_Milliseconds(); R_RotateForViewer(); R_SetupFrustum(); R_GenerateDrawSurfs(); R_SortDrawSurfs( firstDrawSurf, firstLitSurf ); } const image_t* R_UpdateAndGetBundleImage( const textureBundle_t* bundle, updateAnimatedImage_t updateImage ) { if ( bundle->isVideoMap ) { ri.CIN_RunCinematic( bundle->videoMapHandle ); int w, h, client; const byte* data; qbool dirty; const qbool validData = ri.CIN_GrabCinematic( bundle->videoMapHandle, &w, &h, &data, &client, &dirty ); if ( client >= 0 && client < ARRAY_LEN( tr.scratchImage ) ) { image_t* const image = tr.scratchImage[client]; if ( validData ) (*updateImage)(image, w, h, data, dirty); return image; } else { return tr.whiteImage; } } if ( bundle->numImageAnimations <= 1 ) return bundle->image[0]; // it is necessary to do this messy calc to make sure animations line up // exactly with waveforms of the same frequency double v = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE; long long int index = v; index >>= FUNCTABLE_SHIFT; if ( index < 0 ) // may happen with shader time offsets return bundle->image[0]; return bundle->image[index % bundle->numImageAnimations]; }