/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_shade_calc.c #include "tr_local.h" static double WaveValue( const float* table, double base, double amplitude, double phase, double freq ) { // the original code did a double to 32-bit int conversion of x const double x = (phase + tess.shaderTime * freq) * FUNCTABLE_SIZE; const int i = (int)((int64_t)x & (int64_t)FUNCTABLE_MASK); const double r = base + table[i] * amplitude; return r; } static const float* TableForFunc( genFunc_t func ) { switch ( func ) { case GF_SIN: return tr.sinTable; case GF_TRIANGLE: return tr.triangleTable; case GF_SQUARE: return tr.squareTable; case GF_SAWTOOTH: return tr.sawToothTable; case GF_INVERSE_SAWTOOTH: return tr.inverseSawToothTable; case GF_NONE: default: break; } ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name ); return NULL; } // Evaluates a given waveForm_t, referencing backEnd.refdef.time directly static float EvalWaveForm( const waveForm_t *wf ) { return WaveValue( TableForFunc( wf->func ), wf->base, wf->amplitude, wf->phase, wf->frequency ); } static float EvalWaveFormClamped( const waveForm_t *wf ) { float glow = EvalWaveForm( wf ); if ( glow < 0 ) { return 0; } if ( glow > 1 ) { return 1; } return glow; } static void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st, int numVertexes ) { int i; for ( i = 0; i < numVertexes; i++, st += 2 ) { float s = st[0]; float t = st[1]; st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0]; st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1]; } } static void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st, int numVertexes ) { float p; texModInfo_t tmi; p = 1.0f / EvalWaveForm( wf ); tmi.matrix[0][0] = p; tmi.matrix[1][0] = 0; tmi.translate[0] = 0.5f - 0.5f * p; tmi.matrix[0][1] = 0; tmi.matrix[1][1] = p; tmi.translate[1] = 0.5f - 0.5f * p; RB_CalcTransformTexCoords( &tmi, st, numVertexes ); } static void RB_CalcDeformVertexes( const deformStage_t* ds, int firstVertex, int numVertexes ) { float* xyz = (float*)&tess.xyz[firstVertex]; float* normal = (float*)&tess.normal[firstVertex]; vec3_t offset; if ( ds->deformationWave.frequency == 0 ) { const float scale = EvalWaveForm( &ds->deformationWave ); for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 ) { VectorScale( normal, scale, offset ); xyz[0] += offset[0]; xyz[1] += offset[1]; xyz[2] += offset[2]; } } else { const float* table = TableForFunc(ds->deformationWave.func); for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 ) { const float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread; const float scale = WaveValue( table, ds->deformationWave.base, ds->deformationWave.amplitude, ds->deformationWave.phase + off, ds->deformationWave.frequency ); VectorScale( normal, scale, offset ); xyz[0] += offset[0]; xyz[1] += offset[1]; xyz[2] += offset[2]; } } } // wiggle the normals for wavy environment mapping static void RB_CalcDeformNormals( const deformStage_t* ds, int firstVertex, int numVertexes ) { int i; float scale; const float *xyz = ( const float * ) &tess.xyz[firstVertex]; float *normal = ( float * ) &tess.normal[firstVertex]; for ( i = 0; i < numVertexes; i++, xyz += 4, normal += 4 ) { scale = 0.98f; scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, tess.shaderTime * ds->deformationWave.frequency ); normal[ 0 ] += ds->deformationWave.amplitude * scale; scale = 0.98f; scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, tess.shaderTime * ds->deformationWave.frequency ); normal[ 1 ] += ds->deformationWave.amplitude * scale; scale = 0.98f; scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale, tess.shaderTime * ds->deformationWave.frequency ); normal[ 2 ] += ds->deformationWave.amplitude * scale; VectorNormalizeFast( normal ); } } static void RB_CalcBulgeVertexes( const deformStage_t* ds, int firstVertex, int numVertexes ) { int i; const float *st = ( const float * ) &tess.texCoords[firstVertex]; float *xyz = ( float * ) &tess.xyz[firstVertex]; float *normal = ( float * ) &tess.normal[firstVertex]; float now; now = backEnd.refdef.time * ds->bulgeSpeed / 1000.0f; for ( i = 0; i < numVertexes; i++, xyz += 4, st += 2, normal += 4 ) { int off; float scale; off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now ); scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight; xyz[0] += normal[0] * scale; xyz[1] += normal[1] * scale; xyz[2] += normal[2] * scale; } } // a deformation that can move an entire surface along a wave path static void RB_CalcMoveVertexes( const deformStage_t* ds, int firstVertex, int numVertexes ) { const float* table = TableForFunc( ds->deformationWave.func ); const double scale = WaveValue( table, ds->deformationWave.base, ds->deformationWave.amplitude, ds->deformationWave.phase, ds->deformationWave.frequency ); vec3_t offset; VectorScale( ds->moveVector, scale, offset ); float* xyz = (float*)&tess.xyz[firstVertex]; for ( int i = 0; i < numVertexes; i++, xyz += 4 ) { VectorAdd( xyz, offset, xyz ); } } // @TODO: // Change a polygon into a bunch of text polygons static void DeformText( const char *text ) { int i; vec3_t origin, width, height; int len; int ch; byte color[4]; float bottom, top; vec3_t mid; height[0] = 0; height[1] = 0; height[2] = -1; CrossProduct( tess.normal[0], height, width ); // find the midpoint of the box VectorClear( mid ); bottom = 999999; top = -999999; for ( i = 0 ; i < 4 ; i++ ) { VectorAdd( tess.xyz[i], mid, mid ); if ( tess.xyz[i][2] < bottom ) { bottom = tess.xyz[i][2]; } if ( tess.xyz[i][2] > top ) { top = tess.xyz[i][2]; } } VectorScale( mid, 0.25f, origin ); // determine the individual character size height[0] = 0; height[1] = 0; height[2] = ( top - bottom ) * 0.5f; VectorScale( width, height[2] * -0.75f, width ); // determine the starting position len = strlen( text ); VectorMA( origin, (len-1), width, origin ); // clear the shader indexes tess.numIndexes = 0; tess.numVertexes = 0; color[0] = color[1] = color[2] = color[3] = 255; // draw each character for ( i = 0 ; i < len ; i++ ) { ch = text[i]; ch &= 255; if ( ch != ' ' ) { int row, col; float frow, fcol, size; row = ch>>4; col = ch&15; frow = row*0.0625f; fcol = col*0.0625f; size = 0.0625f; RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size ); } VectorMA( origin, -2, width, origin ); } } static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) { out[0] = DotProduct( in, backEnd.orient.axis[0] ); out[1] = DotProduct( in, backEnd.orient.axis[1] ); out[2] = DotProduct( in, backEnd.orient.axis[2] ); } // assuming all the triangles for this shader are independant quads, // rebuild them as forward facing sprites static void AutospriteDeform( int firstVertex, int numVertexes, int firstIndex, int numIndexes ) { int i; float *xyz; vec3_t mid, delta; float radius; vec3_t left, up; vec3_t leftDir, upDir; if ( numVertexes & 3 ) { ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name ); } if ( numIndexes != ( numVertexes >> 2 ) * 6 ) { ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name ); } tess.numVertexes = firstVertex; tess.numIndexes = firstIndex; if ( backEnd.currentEntity != &tr.worldEntity ) { GlobalVectorToLocal( backEnd.viewParms.orient.axis[1], leftDir ); GlobalVectorToLocal( backEnd.viewParms.orient.axis[2], upDir ); } else { VectorCopy( backEnd.viewParms.orient.axis[1], leftDir ); VectorCopy( backEnd.viewParms.orient.axis[2], upDir ); } for ( i = firstVertex ; i < firstVertex + numVertexes ; i+=4 ) { // find the midpoint xyz = tess.xyz[i]; mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]); mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]); mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]); VectorSubtract( xyz, mid, delta ); radius = VectorLength( delta ) * 0.707f; // / sqrt(2) VectorScale( leftDir, radius, left ); VectorScale( upDir, radius, up ); if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } // compensate for scale in the axes if necessary if ( backEnd.currentEntity->e.nonNormalizedAxes ) { float axisLength = VectorLength( backEnd.currentEntity->e.axis[0] ); axisLength = axisLength ? (1.0f / axisLength) : 1.0f; VectorScale(left, axisLength, left); VectorScale(up, axisLength, up); } RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] ); } } // Autosprite2 will pivot a rectangular quad along the center of its long axis static void Autosprite2Deform( int firstVertex, int numVertexes, int firstIndex, int numIndexes ) { int i, j, k; int indexes; float *xyz; vec3_t forward; const int edgeVerts[6][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 } }; if ( numVertexes & 3 ) { ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name ); } if ( numIndexes != ( numVertexes >> 2 ) * 6 ) { ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name ); } if ( backEnd.currentEntity != &tr.worldEntity ) { GlobalVectorToLocal( backEnd.viewParms.orient.axis[0], forward ); } else { VectorCopy( backEnd.viewParms.orient.axis[0], forward ); } // this is a lot of work for two triangles... // we could precalculate a lot of it is an issue, but it would mess up // the shader abstraction for ( i = firstVertex, indexes = firstIndex ; i < firstVertex + numVertexes ; i+=4, indexes+=6 ) { float lengths[2]; int nums[2]; vec3_t mid[2]; vec3_t major, minor; float *v1, *v2; // find the midpoint xyz = tess.xyz[i]; // identify the two shortest edges nums[0] = nums[1] = 0; lengths[0] = lengths[1] = 999999; for ( j = 0 ; j < 6 ; j++ ) { float l; vec3_t temp; v1 = xyz + 4 * edgeVerts[j][0]; v2 = xyz + 4 * edgeVerts[j][1]; VectorSubtract( v1, v2, temp ); l = DotProduct( temp, temp ); if ( l < lengths[0] ) { nums[1] = nums[0]; lengths[1] = lengths[0]; nums[0] = j; lengths[0] = l; } else if ( l < lengths[1] ) { nums[1] = j; lengths[1] = l; } } for ( j = 0 ; j < 2 ; j++ ) { v1 = xyz + 4 * edgeVerts[nums[j]][0]; v2 = xyz + 4 * edgeVerts[nums[j]][1]; mid[j][0] = 0.5f * (v1[0] + v2[0]); mid[j][1] = 0.5f * (v1[1] + v2[1]); mid[j][2] = 0.5f * (v1[2] + v2[2]); } // find the vector of the major axis VectorSubtract( mid[1], mid[0], major ); // cross this with the view direction to get minor axis CrossProduct( major, forward, minor ); VectorNormalize( minor ); // re-project the points for ( j = 0 ; j < 2 ; j++ ) { float l; v1 = xyz + 4 * edgeVerts[nums[j]][0]; v2 = xyz + 4 * edgeVerts[nums[j]][1]; l = 0.5 * sqrt( lengths[j] ); // we need to see which direction this edge // is used to determine direction of projection for ( k = 0 ; k < 5 ; k++ ) { if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0] && tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) { break; } } if ( k == 5 ) { VectorMA( mid[j], l, minor, v1 ); VectorMA( mid[j], -l, minor, v2 ); } else { VectorMA( mid[j], -l, minor, v1 ); VectorMA( mid[j], l, minor, v2 ); } } } } void RB_DeformTessGeometry( int firstVertex, int numVertexes, int firstIndex, int numIndexes ) { int i; const deformStage_t* ds; for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) { ds = &tess.shader->deforms[ i ]; switch ( ds->deformation ) { case DEFORM_NONE: break; case DEFORM_NORMALS: RB_CalcDeformNormals( ds, firstVertex, numVertexes ); break; case DEFORM_WAVE: RB_CalcDeformVertexes( ds, firstVertex, numVertexes ); break; case DEFORM_BULGE: RB_CalcBulgeVertexes( ds, firstVertex, numVertexes ); break; case DEFORM_MOVE: RB_CalcMoveVertexes( ds, firstVertex, numVertexes ); break; case DEFORM_PROJECTION_SHADOW: //RB_ProjectionShadowDeform(); break; case DEFORM_AUTOSPRITE: AutospriteDeform( firstVertex, numVertexes, firstIndex, numIndexes ); break; case DEFORM_AUTOSPRITE2: Autosprite2Deform( firstVertex, numVertexes, firstIndex, numIndexes ); break; case DEFORM_TEXT0: case DEFORM_TEXT1: case DEFORM_TEXT2: case DEFORM_TEXT3: case DEFORM_TEXT4: case DEFORM_TEXT5: case DEFORM_TEXT6: case DEFORM_TEXT7: // @TODO: DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] ); break; } } } static void RB_CalcColorFromEntity( unsigned char *dstColors, int numVertexes ) { int i; int *pColors = ( int * ) dstColors; int c; if ( !backEnd.currentEntity ) return; c = * ( int * ) backEnd.currentEntity->e.shaderRGBA; for ( i = 0; i < numVertexes; i++, pColors++ ) { *pColors = c; } } static void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors, int numVertexes ) { int i; int *pColors = ( int * ) dstColors; unsigned char invModulate[4]; int c; if ( !backEnd.currentEntity ) return; invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0]; invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1]; invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2]; invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it c = * ( int * ) invModulate; for ( i = 0; i < numVertexes; i++, pColors++ ) { *pColors = * ( int * ) invModulate; } } static void RB_CalcAlphaFromEntity( unsigned char *dstColors, int numVertexes ) { int i; if ( !backEnd.currentEntity ) return; dstColors += 3; for ( i = 0; i < numVertexes; i++, dstColors += 4 ) { *dstColors = backEnd.currentEntity->e.shaderRGBA[3]; } } static void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors, int numVertexes ) { int i; if ( !backEnd.currentEntity ) return; dstColors += 3; for ( i = 0; i < numVertexes; i++, dstColors += 4 ) { *dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3]; } } static void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors, int numVertexes ) { int i; int v; float glow; int *colors = ( int * ) dstColors; byte color[4]; if ( wf->func == GF_NOISE ) { glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude; } else { glow = EvalWaveForm( wf ) * tr.identityLight; } if ( glow < 0 ) { glow = 0; } else if ( glow > 1 ) { glow = 1; } v = myftol( 255 * glow ); color[0] = color[1] = color[2] = v; color[3] = 255; v = *(int *)color; for ( i = 0; i < numVertexes; i++, colors++ ) { *colors = v; } } static void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors, int numVertexes ) { int i; int v; float glow; glow = EvalWaveFormClamped( wf ); v = 255 * glow; for ( i = 0; i < numVertexes; i++, dstColors += 4 ) { dstColors[3] = v; } } /* ======================== RB_CalcFogTexCoords To do the clipped fog plane really correctly, we should use projected textures, but I don't trust the drivers and it doesn't fit our shader data. ======================== */ void RB_CalcFogTexCoords( float *st, int firstVertex, int numVertexes ) { int i; float *v; float s, t; float eyeT; qbool eyeOutside; fog_t *fog; vec3_t local; vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; fog = tr.world->fogs + tess.fogNum; // all fogging distance is based on world Z units VectorSubtract( backEnd.orient.origin, backEnd.viewParms.orient.origin, local ); fogDistanceVector[0] = -backEnd.orient.modelMatrix[2]; fogDistanceVector[1] = -backEnd.orient.modelMatrix[6]; fogDistanceVector[2] = -backEnd.orient.modelMatrix[10]; fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.orient.axis[0] ); // scale the fog vectors based on the fog's thickness fogDistanceVector[0] *= fog->tcScale; fogDistanceVector[1] *= fog->tcScale; fogDistanceVector[2] *= fog->tcScale; fogDistanceVector[3] *= fog->tcScale; // rotate the gradient vector for this orientation if ( fog->hasSurface ) { fogDepthVector[0] = fog->surface[0] * backEnd.orient.axis[0][0] + fog->surface[1] * backEnd.orient.axis[0][1] + fog->surface[2] * backEnd.orient.axis[0][2]; fogDepthVector[1] = fog->surface[0] * backEnd.orient.axis[1][0] + fog->surface[1] * backEnd.orient.axis[1][1] + fog->surface[2] * backEnd.orient.axis[1][2]; fogDepthVector[2] = fog->surface[0] * backEnd.orient.axis[2][0] + fog->surface[1] * backEnd.orient.axis[2][1] + fog->surface[2] * backEnd.orient.axis[2][2]; fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.orient.origin, fog->surface ); eyeT = DotProduct( backEnd.orient.viewOrigin, fogDepthVector ) + fogDepthVector[3]; } else { eyeT = 1; // non-surface fog always has eye inside } // see if the viewpoint is outside // this is needed for clipping distance even for constant fog if ( eyeT < 0 ) { eyeOutside = qtrue; } else { eyeOutside = qfalse; } fogDistanceVector[3] += 1.0/512; v = tess.xyz[firstVertex]; st += firstVertex * 2; // calculate density for each point for (i = 0 ; i < numVertexes ; i++, v += 4) { // calculate the length in fog s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3]; t = DotProduct( v, fogDepthVector ) + fogDepthVector[3]; // partially clipped fogs use the T axis if ( eyeOutside ) { if ( t < 1.0 ) { t = 1.0/32; // point is outside, so no fogging } else { t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane } } else { if ( t < 0 ) { t = 1.0/32; // point is outside, so no fogging } else { t = 31.0/32; } } st[0] = s; st[1] = t; st += 2; } } static void RB_CalcModulateColorsByFog( unsigned char *colors, int firstVertex, int numVertexes ) { int i; float texCoords[SHADER_MAX_VERTEXES][2]; // calculate texcoords so we can derive density // this is not wasted, because it would only have // been previously called if the surface was opaque RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes ); colors += firstVertex * 4; for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) { float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); colors[0] *= f; colors[1] *= f; colors[2] *= f; } } static void RB_CalcModulateAlphasByFog( unsigned char *colors, int firstVertex, int numVertexes ) { int i; float texCoords[SHADER_MAX_VERTEXES][2]; // calculate texcoords so we can derive density // this is not wasted, because it would only have // been previously called if the surface was opaque RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes ); colors += firstVertex * 4; for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) { float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); colors[3] *= f; } } static void RB_CalcModulateRGBAsByFog( unsigned char *colors, int firstVertex, int numVertexes ) { int i; float texCoords[SHADER_MAX_VERTEXES][2]; // calculate texcoords so we can derive density // this is not wasted, because it would only have // been previously called if the surface was opaque RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes ); colors += firstVertex * 4; for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) { float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] ); colors[0] *= f; colors[1] *= f; colors[2] *= f; colors[3] *= f; } } static void RB_CalcEnvironmentTexCoords( float *st, int firstVertex, int numVertexes ) { int i; float *v, *normal; vec3_t viewer, reflected; float d; v = tess.xyz[firstVertex]; normal = tess.normal[firstVertex]; st += firstVertex * 2; for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, st += 2 ) { VectorSubtract (backEnd.orient.viewOrigin, v, viewer); VectorNormalizeFast (viewer); d = DotProduct (normal, viewer); reflected[0] = normal[0]*2*d - viewer[0]; reflected[1] = normal[1]*2*d - viewer[1]; reflected[2] = normal[2]*2*d - viewer[2]; st[0] = 0.5 + reflected[1] * 0.5; st[1] = 0.5 - reflected[2] * 0.5; } } static void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st, int numVertexes ) { int i; double now; now = ( wf->phase + tess.shaderTime * wf->frequency ); for ( i = 0; i < numVertexes; i++, st += 2 ) { float s = st[0]; float t = st[1]; st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude; st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude; } } static void RB_CalcScaleTexCoords( const float scale[2], float *st, int numVertexes ) { int i; for ( i = 0; i < numVertexes; i++, st += 2 ) { st[0] *= scale[0]; st[1] *= scale[1]; } } static void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st, int numVertexes ) { int i; double timeScale = tess.shaderTime; double adjustedScrollS, adjustedScrollT; adjustedScrollS = (double)scrollSpeed[0] * timeScale; adjustedScrollT = (double)scrollSpeed[1] * timeScale; // clamp so coordinates don't continuously get larger, causing problems // with hardware limits adjustedScrollS = adjustedScrollS - floor( adjustedScrollS ); adjustedScrollT = adjustedScrollT - floor( adjustedScrollT ); for ( i = 0; i < numVertexes; i++, st += 2 ) { st[0] += adjustedScrollS; st[1] += adjustedScrollT; } } static void RB_CalcRotateTexCoords( float degsPerSecond, float *st, int numVertexes ) { double timeScale = tess.shaderTime; double degs = -degsPerSecond * timeScale; int index = degs * ( FUNCTABLE_SIZE / 360.0f ); float sinValue = tr.sinTable[ index & FUNCTABLE_MASK ]; float cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ]; texModInfo_t tmi; tmi.matrix[0][0] = cosValue; tmi.matrix[1][0] = -sinValue; tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue; tmi.matrix[0][1] = sinValue; tmi.matrix[1][1] = cosValue; tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue; RB_CalcTransformTexCoords( &tmi, st, numVertexes ); } /* ** RB_CalcSpecularAlpha ** ** Calculates specular coefficient and places it in the alpha channel */ vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically void RB_CalcSpecularAlpha( unsigned char *alphas, int firstVertex, int numVertexes ) { int i; float *v, *normal; vec3_t viewer, reflected; float l, d; int b; vec3_t lightDir; v = tess.xyz[firstVertex]; normal = tess.normal[firstVertex]; alphas += (firstVertex * 4) + 3; for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) { float ilength; VectorSubtract( lightOrigin, v, lightDir ); VectorNormalizeFast( lightDir ); // calculate the specular color d = DotProduct (normal, lightDir); // we don't optimize for the d < 0 case since this tends to // cause visual artifacts such as faceted "snapping" reflected[0] = normal[0]*2*d - lightDir[0]; reflected[1] = normal[1]*2*d - lightDir[1]; reflected[2] = normal[2]*2*d - lightDir[2]; VectorSubtract (backEnd.orient.viewOrigin, v, viewer); ilength = Q_rsqrt( DotProduct( viewer, viewer ) ); l = DotProduct (reflected, viewer); l *= ilength; if (l < 0) { b = 0; } else { l = l*l; l = l*l; b = l * 255; if (b > 255) { b = 255; } } *alphas = b; } } static void RB_CalcDiffuseColor( unsigned char *colors, int firstVertex, int numVertexes ) { int i, j; float *v, *normal; float incoming; trRefEntity_t *ent; int ambientLightInt; vec3_t ambientLight; vec3_t lightDir; vec3_t directedLight; ent = backEnd.currentEntity; if (!ent || !numVertexes) return; ambientLightInt = ent->ambientLightInt; VectorCopy( ent->ambientLight, ambientLight ); VectorCopy( ent->directedLight, directedLight ); VectorCopy( ent->lightDir, lightDir ); v = tess.xyz[firstVertex]; normal = tess.normal[firstVertex]; colors += firstVertex * 4; for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) { incoming = DotProduct (normal, lightDir); if ( incoming <= 0 ) { *(int *)&colors[i*4] = ambientLightInt; continue; } j = myftol( ambientLight[0] + incoming * directedLight[0] ); if ( j > 255 ) { j = 255; } colors[i*4+0] = j; j = myftol( ambientLight[1] + incoming * directedLight[1] ); if ( j > 255 ) { j = 255; } colors[i*4+1] = j; j = myftol( ambientLight[2] + incoming * directedLight[2] ); if ( j > 255 ) { j = 255; } colors[i*4+2] = j; colors[i*4+3] = 255; } } void R_ComputeColors( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes ) { // // rgbGen // switch ( pStage->rgbGen ) { case CGEN_IDENTITY: Com_Memset( &svars.colors[firstVertex], 0xff, numVertexes * 4 ); break; default: case CGEN_IDENTITY_LIGHTING: Com_Memset( &svars.colors[firstVertex], tr.identityLightByte, numVertexes * 4 ); break; case CGEN_LIGHTING_DIFFUSE: RB_CalcDiffuseColor( ( unsigned char * ) &svars.colors[firstVertex], firstVertex, numVertexes ); break; case CGEN_CONST: for (int i = firstVertex; i < firstVertex + numVertexes; i++) { *(int *)svars.colors[i] = *(int *)pStage->constantColor; } break; case CGEN_VERTEX: if ( tr.identityLight == 1 ) { Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) ); } else { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight; svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight; svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight; svars.colors[i][3] = tess.vertexColors[i][3]; } } break; case CGEN_EXACT_VERTEX: Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) ); break; case CGEN_ONE_MINUS_VERTEX: if ( tr.identityLight == 1 ) { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][0] = 255 - tess.vertexColors[i][0]; svars.colors[i][1] = 255 - tess.vertexColors[i][1]; svars.colors[i][2] = 255 - tess.vertexColors[i][2]; } } else { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight; svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight; svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight; } } break; case CGEN_FOG: { const fog_t* fog = tr.world->fogs + tess.fogNum; for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { *(int*)&svars.colors[i] = fog->colorInt; } } break; case CGEN_WAVEFORM: RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; case CGEN_ENTITY: RB_CalcColorFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; case CGEN_ONE_MINUS_ENTITY: RB_CalcColorFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; } // // alphaGen // switch ( pStage->alphaGen ) { case AGEN_SKIP: break; case AGEN_IDENTITY: if ( pStage->rgbGen != CGEN_IDENTITY ) { if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) || pStage->rgbGen != CGEN_VERTEX ) { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][3] = 0xff; } } } break; case AGEN_CONST: if ( pStage->rgbGen != CGEN_CONST ) { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][3] = pStage->constantColor[3]; } } break; case AGEN_WAVEFORM: RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; case AGEN_LIGHTING_SPECULAR: RB_CalcSpecularAlpha( ( unsigned char * ) svars.colors, firstVertex, numVertexes ); break; case AGEN_ENTITY: RB_CalcAlphaFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; case AGEN_ONE_MINUS_ENTITY: RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes ); break; case AGEN_VERTEX: if ( pStage->rgbGen != CGEN_VERTEX ) { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][3] = tess.vertexColors[i][3]; } } break; case AGEN_ONE_MINUS_VERTEX: for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { svars.colors[i][3] = 255 - tess.vertexColors[i][3]; } break; case AGEN_PORTAL: { for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) { vec3_t v; VectorSubtract( tess.xyz[i], backEnd.viewParms.orient.origin, v ); float len = VectorLength( v ) / tess.shader->portalRange; svars.colors[i][3] = (byte)Com_Clamp( 0, 255, len * 255 ); } } break; } // // fog adjustment for colors to fade out as fog increases // if ( tess.fogNum ) { switch ( pStage->adjustColorsForFog ) { case ACFF_MODULATE_RGB: RB_CalcModulateColorsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes ); break; case ACFF_MODULATE_ALPHA: RB_CalcModulateAlphasByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes ); break; case ACFF_MODULATE_RGBA: RB_CalcModulateRGBAsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes ); break; case ACFF_NONE: break; } } } void R_ComputeTexCoords( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes, qbool ptrOpt ) { svars.texcoordsptr = svars.texcoords; // generate the base texture coordinates switch ( pStage->tcGen ) { case TCGEN_IDENTITY: Com_Memset( svars.texcoords + firstVertex, 0, sizeof( float ) * 2 * numVertexes ); break; case TCGEN_TEXTURE: if ( !ptrOpt || pStage->numTexMods > 0 || pStage->type == ST_LIGHTMAP ) Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords[firstVertex], numVertexes * sizeof(vec2_t) ); else svars.texcoordsptr = tess.texCoords; break; case TCGEN_LIGHTMAP: if ( !ptrOpt || pStage->numTexMods > 0 ) Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords2[firstVertex], numVertexes * sizeof(vec2_t) ); else svars.texcoordsptr = tess.texCoords2; break; case TCGEN_VECTOR: for ( int i = firstVertex ; i < firstVertex + numVertexes ; i++ ) { svars.texcoords[i][0] = DotProduct( tess.xyz[i], pStage->tcGenVectors[0] ); svars.texcoords[i][1] = DotProduct( tess.xyz[i], pStage->tcGenVectors[1] ); } break; case TCGEN_FOG: RB_CalcFogTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes ); break; case TCGEN_ENVIRONMENT_MAPPED: RB_CalcEnvironmentTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes ); break; case TCGEN_BAD: return; } // then alter for any tcmods for ( int i = 0; i < pStage->numTexMods; ++i ) { switch ( pStage->texMods[i].type ) { case TMOD_NONE: i = TR_MAX_TEXMODS; // break out of for loop break; case TMOD_TURBULENT: RB_CalcTurbulentTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_ENTITY_TRANSLATE: RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_SCROLL: RB_CalcScrollTexCoords( pStage->texMods[i].scroll, (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_SCALE: RB_CalcScaleTexCoords( pStage->texMods[i].scale, (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_STRETCH: RB_CalcStretchTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_TRANSFORM: RB_CalcTransformTexCoords( &pStage->texMods[i], (float*)&svars.texcoords[firstVertex], numVertexes ); break; case TMOD_ROTATE: RB_CalcRotateTexCoords( pStage->texMods[i].rotateSpeed, (float*)&svars.texcoords[firstVertex], numVertexes ); break; default: ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'\n", pStage->texMods[i].type, tess.shader->name ); break; } } // fix up uncorrected lightmap texture coordinates if ( pStage->type == ST_LIGHTMAP && pStage->tcGen != TCGEN_LIGHTMAP ) { const shader_t* const shader = tess.shader; for ( int i = firstVertex; i < firstVertex + numVertexes; ++i ) { svars.texcoords[i][0] = svars.texcoords[i][0] * shader->lmScale[0] + shader->lmBias[0]; svars.texcoords[i][1] = svars.texcoords[i][1] * shader->lmScale[1] + shader->lmBias[1]; } } }