/* =========================================================================== Copyright (C) 2023-2024 Gian 'myT' Schellenbaum This file is part of Challenge Quake 3 (CNQ3). Challenge Quake 3 is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Challenge Quake 3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Challenge Quake 3. If not, see . =========================================================================== */ // shared utilities #pragma once #include "../common/state_bits.h.hlsli" #include "../common/blend.hlsli" #define PI 3.1415926535897932384626433832795 #define PI_D2 (PI / 2.0) #define PI_D4 (PI / 4.0) #define PI_M2 (PI * 2.0) float DegToRad(float deg) { return PI * (deg / 180.0); } float RadToDeg(float rad) { return 180.0 * (rad / PI); } float Brightness(float3 color) { float brightness = dot(color, float3(0.299, 0.587, 0.114)); return brightness; } float4 MakeGreyscale(float4 input, float amount) { float grey = dot(input.rgb, float3(0.299, 0.587, 0.114)); float4 result = lerp(input, float4(grey, grey, grey, input.a), amount); return result; } /* f = far clip plane distance n = near clip plane distance exp = exponential depth value (as stored in the Z-buffer) 2 * f * n B linear(exp) = ----------------------- = ------- (f + n) - exp * (f - n) exp - A f + n -2 * f * n with A = ----- and B = ---------- f - n f - n */ float LinearDepth(float zwDepth, float A, float B) { return B / (zwDepth - A); } float4 FSTrianglePosFromVertexId(uint id) { return float4( (float)(id / 2) * 4.0 - 1.0, (float)(id % 2) * 4.0 - 1.0, 0.0, 1.0); } float2 FSTriangleTCFromVertexId(uint id) { return float2( (float)(id / 2) * 2.0, 1.0 - (float)(id % 2) * 2.0); } uint PackColor(float4 c) { uint4 u = uint4(saturate(c) * 255.0); uint r = u.r | (u.g << 8) | (u.b << 16) | (u.a << 24); return r; } float4 UnpackColor(uint c) { uint4 u = uint4(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu, (c >> 24) & 0xFFu); float4 r = float4(u) / 255.0; return r; } float EaseInCubic(float x) { return x * x * x; } float EaseOutCubic(float x) { float y = 1.0 - x; return 1.0 - y * y * y; } float EaseInOutCubic(float x) { if(x < 0.5) { return 4 * x * x * x; } float y = -2 * x + 2; return 1 - 0.5 * y * y * y; } float EaseInQuad(float x) { return x * x; } float smoothstep01(float x) { return smoothstep(0.0, 1.0, x); } // Oct*: octahedron normal vector encoding // original code from "A Survey of Efficient Representations for Independent Unit Vectors" // further improved by Krzysztof Narkowicz and Rune Stubbe float2 OctWrap(float2 v) { return (1.0 - abs(v.yx)) * (v.xy >= 0.0 ? 1.0 : -1.0); } float2 OctEncode(float3 n) { n /= (abs(n.x) + abs(n.y) + abs(n.z)); n.xy = n.z >= 0.0 ? n.xy : OctWrap(n.xy); n.xy = n.xy * 0.5 + 0.5; return n.xy; } float3 OctDecode(float2 f) { f = f * 2.0 - 1.0; float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y)); float t = saturate(-n.z); n.xy += n.xy >= 0.0 ? -t : t; return normalize(n); } float3 GetPositionFromDepth(float2 tc01, float depthZW, float4x4 invMatrix) { float x = tc01.x * 2.0 - 1.0; float y = (1.0 - tc01.y) * 2.0 - 1.0; float4 position = mul(float4(x, y, depthZW, 1.0), invMatrix); float3 result = position.xyz / position.w; return result; }