/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "vm_local.h" //#define DEBUG_VM #ifdef DEBUG_VM // bk001204 static const char *opnames[256] = { "OP_UNDEF", "OP_IGNORE", "OP_BREAK", "OP_ENTER", "OP_LEAVE", "OP_CALL", "OP_PUSH", "OP_POP", "OP_CONST", "OP_LOCAL", "OP_JUMP", //------------------- "OP_EQ", "OP_NE", "OP_LTI", "OP_LEI", "OP_GTI", "OP_GEI", "OP_LTU", "OP_LEU", "OP_GTU", "OP_GEU", "OP_EQF", "OP_NEF", "OP_LTF", "OP_LEF", "OP_GTF", "OP_GEF", //------------------- "OP_LOAD1", "OP_LOAD2", "OP_LOAD4", "OP_STORE1", "OP_STORE2", "OP_STORE4", "OP_ARG", "OP_BLOCK_COPY", //------------------- "OP_SEX8", "OP_SEX16", "OP_NEGI", "OP_ADD", "OP_SUB", "OP_DIVI", "OP_DIVU", "OP_MODI", "OP_MODU", "OP_MULI", "OP_MULU", "OP_BAND", "OP_BOR", "OP_BXOR", "OP_BCOM", "OP_LSH", "OP_RSHI", "OP_RSHU", "OP_NEGF", "OP_ADDF", "OP_SUBF", "OP_DIVF", "OP_MULF", "OP_CVIF", "OP_CVFI" }; #endif /* ==================== VM_PrepareInterpreter2 ==================== */ qboolean VM_PrepareInterpreter2( vm_t *vm, vmHeader_t *header ) { const char *errMsg; instruction_t *buf; buf = ( instruction_t *) Hunk_Alloc( (vm->instructionCount + 8) * sizeof( instruction_t ), h_high ); errMsg = VM_LoadInstructions( header, buf ); if ( !errMsg ) { errMsg = VM_CheckInstructions( buf, vm->instructionCount, vm->jumpTableTargets, vm->numJumpTableTargets, vm->dataLength ); } if ( errMsg ) { Com_Printf( "VM_PrepareInterpreter2 error: %s\n", errMsg ); return qfalse; } vm->codeBase.ptr = (byte*)buf; return qtrue; } static void CallStackPush( vm_t *vm, int *callStackDepth, int ip ) { const int clampedDepth = min( vm->callStackDepth, MAX_VM_CALL_STACK_DEPTH - 1 ); vm->callStack[clampedDepth] = ip; vm->callStackDepth++; *callStackDepth = max( *callStackDepth, clampedDepth + 1 ); } static void CallStackPop( vm_t *vm ) { vm->callStackDepth--; } /* ============== VM_CallInterpreted2 Upon a system call, the stack will look like: sp+32 parm1 sp+28 parm0 sp+24 return stack sp+20 return address sp+16 local1 sp+14 local0 sp+12 arg1 sp+8 arg0 sp+4 return stack sp return address An interpreted function will immediately execute an OP_ENTER instruction, which will subtract space for locals from sp ============== */ int VM_CallInterpreted2( vm_t *vm, int *args ) { typedef union floatint_u { int i; unsigned int u; float f; byte b[4]; } floatint_t; int stack[MAX_OPSTACK_SIZE]; int *opStack, *opStackTop; int programStack; int stackOnEntry; int callStackDepth = 0; byte *image; int v1, v0; int dataMask; instruction_t *inst, *ci; floatint_t r0, r1; int opcode; int *img; int i; // interpret the code vm->currentlyInterpreting = qtrue; // we might be called recursively, so this might not be the very top programStack = stackOnEntry = vm->programStack; // set up the stack frame image = vm->dataBase; inst = (instruction_t *)vm->codeBase.ptr; dataMask = vm->dataMask; // leave a free spot at start of stack so // that as long as opStack is valid, opStack-1 will // not corrupt anything opStack = stack; opStackTop = stack + ARRAY_LEN( stack ) - 1; programStack -= 8 + (VMMAIN_CALL_ARGS*4); img = (int*)&image[ programStack ]; for ( i = 0; i < VMMAIN_CALL_ARGS; i++ ) { img[ i + 2 ] = args[ i ]; } img[ 1 ] = 0; // return stack img[ 0 ] = -1; // will terminate the loop on return ci = inst; // main interpreter loop, will exit when a LEAVE instruction // grabs the -1 program counter while ( 1 ) { r0.i = opStack[0]; r1.i = opStack[-1]; nextInstruction2: v0 = ci->value; opcode = ci->op; ci++; switch ( opcode ) { case OP_BREAK: vm->breakCount++; goto nextInstruction2; case OP_ENTER: // get size of stack frame programStack -= v0; if ( programStack <= vm->stackBottom ) { Com_Error( ERR_DROP, "VM programStack overflow" ); } if ( opStack + ((ci-1)->opStack/4) >= opStackTop ) { Com_Error( ERR_DROP, "VM opStack overflow" ); } CallStackPush( vm, &callStackDepth, (int)(ci - (instruction_t*)vm->codeBase.ptr) - 1 ); break; case OP_LEAVE: CallStackPop( vm ); // remove our stack frame programStack += v0; // grab the saved program counter v1 = *(int *)&image[ programStack ]; // check for leaving the VM if ( v1 == -1 ) { goto done; } else if ( (unsigned)v1 >= vm->instructionCount ) { Com_Error( ERR_DROP, "VM program counter out of range in OP_LEAVE" ); } ci = inst + v1; break; case OP_CALL: // save current program counter *(int *)&image[ programStack ] = ci - inst; // jump to the location on the stack if ( r0.i < 0 ) { // system call // save the stack to allow recursive VM entry vm->programStack = programStack - 4; *(int *)&image[ programStack + 4 ] = ~r0.i; { #if idx64 //__WORDSIZE == 64 // the vm has ints on the stack, we expect // longs so we have to convert it intptr_t argarr[16]; int argn; for ( argn = 0; argn < ARRAY_LEN( argarr ); ++argn ) { argarr[ argn ] = *(int*)&image[ programStack + 4 + 4*argn ]; } CallStackPush( vm, &callStackDepth, r0.i ); v0 = vm->systemCall( &argarr[0] ); CallStackPop( vm ); #else CallStackPush( vm, &callStackDepth, r0.i ); v0 = vm->systemCall( (intptr_t *)&image[ programStack + 4 ] ); CallStackPop( vm ); #endif } // save return value //opStack++; ci = inst + *(int *)&image[ programStack ]; *opStack = v0; } else if ( r0.u < vm->instructionCount ) { // vm call ci = inst + r0.i; opStack--; } else { Com_Error( ERR_DROP, "VM program counter out of range in OP_CALL" ); } break; // push and pop are only needed for discarded or bad function return values case OP_PUSH: opStack++; break; case OP_POP: opStack--; break; case OP_CONST: opStack++; r1.i = r0.i; r0.i = *opStack = v0; goto nextInstruction2; case OP_LOCAL: opStack++; r1.i = r0.i; r0.i = *opStack = v0 + programStack; goto nextInstruction2; case OP_JUMP: if ( r0.u >= vm->instructionCount ) { Com_Error( ERR_DROP, "VM program counter out of range in OP_JUMP" ); } ci = inst + r0.i; opStack--; break; /* =================================================================== BRANCHES =================================================================== */ case OP_EQ: opStack -= 2; if ( r1.i == r0.i ) ci = inst + v0; break; case OP_NE: opStack -= 2; if ( r1.i != r0.i ) ci = inst + v0; break; case OP_LTI: opStack -= 2; if ( r1.i < r0.i ) ci = inst + v0; break; case OP_LEI: opStack -= 2; if ( r1.i <= r0.i ) ci = inst + v0; break; case OP_GTI: opStack -= 2; if ( r1.i > r0.i ) ci = inst + v0; break; case OP_GEI: opStack -= 2; if ( r1.i >= r0.i ) ci = inst + v0; break; case OP_LTU: opStack -= 2; if ( r1.u < r0.u ) ci = inst + v0; break; case OP_LEU: opStack -= 2; if ( r1.u <= r0.u ) ci = inst + v0; break; case OP_GTU: opStack -= 2; if ( r1.u > r0.u ) ci = inst + v0; break; case OP_GEU: opStack -= 2; if ( r1.u >= r0.u ) ci = inst + v0; break; case OP_EQF: opStack -= 2; if ( r1.f == r0.f ) ci = inst + v0; break; case OP_NEF: opStack -= 2; if ( r1.f != r0.f ) ci = inst + v0; break; case OP_LTF: opStack -= 2; if ( r1.f < r0.f ) ci = inst + v0; break; case OP_LEF: opStack -= 2; if ( r1.f <= r0.f ) ci = inst + v0; break; case OP_GTF: opStack -= 2; if ( r1.f > r0.f ) ci = inst + v0; break; case OP_GEF: opStack -= 2; if ( r1.f >= r0.f ) ci = inst + v0; break; //=================================================================== case OP_LOAD1: r0.i = *opStack = image[ r0.i & dataMask ]; goto nextInstruction2; case OP_LOAD2: r0.i = *opStack = *(unsigned short *)&image[ r0.i & ( dataMask & ~1 ) ]; goto nextInstruction2; case OP_LOAD4: r0.i = *opStack = *(int *)&image[ r0.i & ( dataMask & ~3 ) ]; goto nextInstruction2; case OP_STORE1: image[ r1.i & dataMask ] = r0.i; opStack -= 2; break; case OP_STORE2: *(short *)&image[ r1.i & (dataMask & ~1) ] = r0.i; opStack -= 2; break; case OP_STORE4: *(int *)&image[ r1.i & (dataMask & ~3) ] = r0.i; opStack -= 2; break; case OP_ARG: // single byte offset from programStack *(int *)&image[ ( v0 + programStack ) /*& ( dataMask & ~3 ) */ ] = r0.i; opStack--; break; case OP_BLOCK_COPY: { int *src, *dest; int count, srci, desti; count = v0; // MrE: copy range check srci = r0.i & dataMask; desti = r1.i & dataMask; count = ((srci + count) & dataMask) - srci; count = ((desti + count) & dataMask) - desti; src = (int *)&image[ srci ]; dest = (int *)&image[ desti ]; memcpy( dest, src, count ); opStack -= 2; } break; case OP_SEX8: *opStack = (signed char)*opStack; break; case OP_SEX16: *opStack = (short)*opStack; break; case OP_NEGI: *opStack = -r0.i; break; case OP_ADD: opStack[-1] = r1.i + r0.i; opStack--; break; case OP_SUB: opStack[-1] = r1.i - r0.i; opStack--; break; case OP_DIVI: opStack[-1] = r1.i / r0.i; opStack--; break; case OP_DIVU: opStack[-1] = r1.u / r0.u; opStack--; break; case OP_MODI: opStack[-1] = r1.i % r0.i; opStack--; break; case OP_MODU: opStack[-1] = r1.u % r0.u; opStack--; break; case OP_MULI: opStack[-1] = r1.i * r0.i; opStack--; break; case OP_MULU: opStack[-1] = r1.u * r0.u; opStack--; break; case OP_BAND: opStack[-1] = r1.u & r0.u; opStack--; break; case OP_BOR: opStack[-1] = r1.u | r0.u; opStack--; break; case OP_BXOR: opStack[-1] = r1.u ^ r0.u; opStack--; break; case OP_BCOM: *opStack = ~ r0.u; // id bug: was writing to opStack[-1] break; case OP_LSH: opStack[-1] = r1.i << r0.i; opStack--; break; case OP_RSHI: opStack[-1] = r1.i >> r0.i; opStack--; break; case OP_RSHU: opStack[-1] = r1.u >> r0.i; opStack--; break; case OP_NEGF: *(float *)opStack = - r0.f; break; case OP_ADDF: *(float *)(opStack-1) = r1.f + r0.f; opStack--; break; case OP_SUBF: *(float *)(opStack-1) = r1.f - r0.f; opStack--; break; case OP_DIVF: *(float *)(opStack-1) = r1.f / r0.f; opStack--; break; case OP_MULF: *(float *)(opStack-1) = r1.f * r0.f; opStack--; break; case OP_CVIF: *(float *)opStack = (float) r0.i; break; case OP_CVFI: *opStack = (int) r0.f; break; } } done: //vm->currentlyInterpreting = qfalse; if ( opStack != &stack[1] ) { Com_Error( ERR_DROP, "Interpreter error: opStack = %ld", (long int) (opStack - stack) ); } vm->programStack = stackOnEntry; vm->lastCallStackDepth = callStackDepth; // return the result return *opStack; }