thirtyflightsofloving/renderer/r_warp.c
Knightmare66 85a20a70c2 Refactored surface rendering to use new mpolyvertex_t struct. This replaces the old vertex float array, and integrates vertex lighting.
Removed legacy GL_NV_texture_shader water warp effect.
Added r_subdivide_size cvar to control polygon subdivision of warp surfaces.
Added preliminary support for warp lightmaps.
2021-07-11 03:33:32 -04:00

610 lines
18 KiB
C

/*
===========================================================================
Copyright (C) 1997-2001 Id Software, Inc.
This file is part of Quake 2 source code.
Quake 2 source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake 2 source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake 2 source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// r_warp.c -- sky and water polygons
#include "r_local.h"
extern model_t *loadmodel;
msurface_t *warpface;
#define SUBDIVIDE_SIZE 64
void BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
int i, j;
float *v;
mins[0] = mins[1] = mins[2] = 999999;
maxs[0] = maxs[1] = maxs[2] = -999999;
v = verts;
for (i=0; i<numverts; i++)
for (j=0; j<3; j++, v++)
{
if (*v < mins[j])
mins[j] = *v;
if (*v > maxs[j])
maxs[j] = *v;
}
}
void SubdividePolygon (int numverts, float *verts)
{
int i, j, k;
vec3_t mins, maxs;
float m;
float *v;
vec3_t front[64], back[64];
int f, b; // size
float dist[64];
float frac;
glpoly_t *poly;
float s, t;
vec3_t total;
float total_s, total_t;
float lightmap_total_s, lightmap_total_t; // added for lightmaps
if (numverts > 60)
VID_Error (ERR_DROP, "numverts = %i", numverts);
BoundPoly (numverts, verts, mins, maxs);
for (i=0; i<3; i++)
{
m = (mins[i] + maxs[i]) * 0.5;
// m = SUBDIVIDE_SIZE * floor (m/SUBDIVIDE_SIZE + 0.5);
m = r_subdivide_size->value * floor (m/r_subdivide_size->value + 0.5);
if (maxs[i] - m < 8)
continue;
if (m - mins[i] < 8)
continue;
// cut it
v = verts + i;
for (j=0; j<numverts; j++, v+= 3)
dist[j] = *v - m;
// wrap cases
dist[j] = dist[0];
v-=i;
VectorCopy (verts, v);
f = b = 0;
v = verts;
for (j=0; j<numverts; j++, v+= 3)
{
if (dist[j] >= 0)
{
VectorCopy (v, front[f]);
f++;
}
if (dist[j] <= 0)
{
VectorCopy (v, back[b]);
b++;
}
if (dist[j] == 0 || dist[j+1] == 0)
continue;
if ( (dist[j] > 0) != (dist[j+1] > 0) )
{
// clip point
frac = dist[j] / (dist[j] - dist[j+1]);
for (k=0; k<3; k++)
front[f][k] = back[b][k] = v[k] + frac*(v[3+k] - v[k]);
f++;
b++;
}
}
SubdividePolygon (f, front[0]);
SubdividePolygon (b, back[0]);
return;
}
// add a point in the center to help keep warp valid
// poly = Hunk_Alloc (sizeof(glpoly_t) + ((numverts-4)+2) * VERTEXSIZE*sizeof(float));
poly = Hunk_Alloc (sizeof(glpoly_t) + ((numverts-4)+2) * sizeof(mpolyvertex_t));
poly->next = warpface->polys;
warpface->polys = poly;
poly->numverts = numverts+2;
// alloc vertex light fields
/* size = poly->numverts*3*sizeof(byte);
poly->vertexlight = Hunk_Alloc(size);
poly->vertexlightbase = Hunk_Alloc(size);
memset(poly->vertexlight, 0, size);
memset(poly->vertexlightbase, 0, size); */
poly->vertexlightset = false;
VectorClear (total);
total_s = total_t = 0;
lightmap_total_s = lightmap_total_t = 0; // added for lightmaps
for (i=0; i<numverts; i++, verts+=3)
{
// VectorCopy (verts, poly->verts[i+1]);
VectorCopy (verts, poly->verts[i+1].xyz);
s = DotProduct (verts, warpface->texinfo->vecs[0]);
t = DotProduct (verts, warpface->texinfo->vecs[1]);
total_s += s;
total_t += t;
VectorAdd (total, verts, total);
// poly->verts[i+1][3] = s;
// poly->verts[i+1][4] = t;
poly->verts[i+1].texture_st[0] = s;
poly->verts[i+1].texture_st[1] = t;
// added for lightmaps
if (warpface->isLightmapped)
{
s = DotProduct (verts, warpface->texinfo->vecs[0]) + warpface->texinfo->vecs[0][3];
s -= warpface->texturemins[0];
s += warpface->light_s*16;
s += 8;
s /= LM_BLOCK_WIDTH*16;
t = DotProduct (verts, warpface->texinfo->vecs[1]) + warpface->texinfo->vecs[1][3];
t -= warpface->texturemins[1];
t += warpface->light_t*16;
t += 8;
t /= LM_BLOCK_HEIGHT*16;
poly->verts[i+1].lightmap_st[0] = s;
poly->verts[i+1].lightmap_st[1] = t;
lightmap_total_s += s;
lightmap_total_t += t;
}
}
// VectorScale (total, (1.0/(float)numverts), poly->verts[0]);
// VectorCopy(poly->verts[0], poly->center); // for vertex lighting
// poly->verts[0][3] = total_s/numverts;
// poly->verts[0][4] = total_t/numverts;
VectorScale (total, (1.0/(float)numverts), poly->verts[0].xyz);
VectorCopy(poly->verts[0].xyz, poly->center); // for vertex lighting
poly->verts[0].texture_st[0] = total_s/numverts;
poly->verts[0].texture_st[1] = total_t/numverts;
// added for lightmaps
if (warpface->isLightmapped)
{
poly->verts[0].lightmap_st[0] = lightmap_total_s/numverts;
poly->verts[0].lightmap_st[1] = lightmap_total_t/numverts;
}
// copy first vertex to last
// memcpy (poly->verts[i+1], poly->verts[1], sizeof(poly->verts[0]));
memcpy (&poly->verts[i+1], &poly->verts[1], sizeof(mpolyvertex_t));
}
/*
================
R_SubdivideSurface
Breaks a polygon up along axial 64 unit
boundaries so that turbulent warps
can be done reasonably.
================
*/
void R_SubdivideSurface (msurface_t *surf)
{
vec3_t verts[64];
int numverts;
int i;
int lindex;
float *vec;
// clamp r_subdivide_size to a reasonable range
if (!r_subdivide_size)
r_subdivide_size = Cvar_Get("r_subdivide_size", "64", 0); // chop size for warp surfaces
if ((r_subdivide_size->value < 64.0f) || (r_subdivide_size->value > 512.0f))
Cvar_SetValue( "r_subdivide_size", 64);
warpface = surf;
//
// convert edges back to a normal polygon
//
numverts = 0;
for (i=0; i<surf->numedges; i++)
{
lindex = loadmodel->surfedges[surf->firstedge + i];
if (lindex > 0)
vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position;
else
vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position;
VectorCopy (vec, verts[numverts]);
numverts++;
}
SubdividePolygon (numverts, verts[0]);
}
//=========================================================
// speed up sin calculations - Ed
float r_turbsin[] =
{
#include "warpsin.h"
};
#define TURBSCALE (256.0 / (2 * M_PI))
#if 0
// MrG - texture shader stuffs
#define DST_SIZE 16
unsigned int dst_texture_NV, dst_texture_ARB;
/*
===============
CreateDSTTex_NV
Create the texture which warps texture shaders
===============
*/
void CreateDSTTex_NV (void)
{
char data[DST_SIZE][DST_SIZE][2];
int x,y;
for (x=0; x<DST_SIZE; x++)
for (y=0; y<DST_SIZE; y++) {
data[x][y][0]=rand()%255-128;
data[x][y][1]=rand()%255-128;
}
qglGenTextures(1,&dst_texture_NV);
qglBindTexture(GL_TEXTURE_2D, dst_texture_NV);
qglTexImage2D(GL_TEXTURE_2D, 0, GL_DSDT8_NV, DST_SIZE, DST_SIZE, 0, GL_DSDT_NV,
GL_BYTE, data);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
}
/*
===============
CreateDSTTex_ARB
Create the texture which warps texture shaders
===============
*/
void CreateDSTTex_ARB (void)
{
unsigned char dist[DST_SIZE][DST_SIZE][4];
int x,y;
srand(GetTickCount());
for (x=0; x<DST_SIZE; x++)
for (y=0; y<DST_SIZE; y++) {
dist[x][y][0] = rand()%255;
dist[x][y][1] = rand()%255;
dist[x][y][2] = rand()%48;
dist[x][y][3] = rand()%48;
}
qglGenTextures(1,&dst_texture_ARB);
qglBindTexture(GL_TEXTURE_2D, dst_texture_ARB);
qglTexImage2D (GL_TEXTURE_2D, 0, 4, DST_SIZE, DST_SIZE, 0, GL_RGBA, GL_UNSIGNED_BYTE, dist);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglHint(GL_GENERATE_MIPMAP_HINT_SGIS, GL_NICEST);
qglTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS, GL_TRUE);
}
/*
===============
R_InitDSTTex
Resets the texture which warps texture shaders.
Needed after a vid_restart.
===============
*/
void R_InitDSTTex (void)
{
// qglDeleteTextures(1, &dst_texture_NV);
// qglDeleteTextures(1, &dst_texture_ARB);
dst_texture_NV = 0;
// dst_texture_ARB = 0;
CreateDSTTex_NV ();
// CreateDSTTex_ARB ();
}
//end MrG
#endif
image_t *R_TextureAnimation (msurface_t *surf);
/*
=============
RB_RenderWarpSurface
backend for R_DrawWarpSurface
=============
*/
void RB_RenderWarpSurface (msurface_t *surf)
{
float args[7] = {0,0.05,0,0,0.04,0,0};
float alpha = colorArray[0][3];
image_t *image = R_TextureAnimation (surf);
qboolean lightmapped = surf->isLightmapped && (r_worldmodel->bspFeatures & BSPF_WARPLIGHTMAPS);
qboolean vertexLight = r_warp_lighting->integer && !lightmapped && !(surf->texinfo->flags & SURF_NOLIGHTENV);
// qboolean texShaderWarpNV = glConfig.NV_texshaders && r_pixel_shader_warp->integer;
qboolean texShaderWarpARB = glConfig.arb_fragment_program && r_pixel_shader_warp->integer;
qboolean texShaderWarp = /*texShaderWarpNV ||*/ texShaderWarpARB;
// if (texShaderWarpNV && texShaderWarpARB)
// texShaderWarpARB = (r_pixel_shader_warp->integer == 1);
if (rb_vertex == 0 || rb_index == 0) // nothing to render
return;
c_brush_calls++;
// Psychospaz's vertex lighting
if (vertexLight) {
GL_ShadeModel (GL_SMOOTH);
if (!texShaderWarp)
R_SetVertexRGBScale (true);
}
/*
Texture Shader waterwarp
Damn this looks fantastic
WHY texture shaders? because I can!
- MrG
*/
if (texShaderWarpARB)
{
GL_SelectTexture(0);
GL_MBind(0, image->texnum);
if (lightmapped)
{
// GL_EnableTexture(1);
if (r_fullbright->integer != 0)
GL_MBind (1, glMedia.whitetexture->texnum);
else
GL_MBind (1, glState.lightmap_textures + surf->lightmaptexturenum);
GL_EnableTexture(2);
// GL_MBind(2, dst_texture_ARB);
GL_MBind(2, glMedia.distTextureARB->texnum);
GL_Enable (GL_FRAGMENT_PROGRAM_ARB);
qglBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, fragment_programs[F_PROG_WARP_LM]);
qglProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0, r_rgbscale->value, r_rgbscale->value, r_rgbscale->value, 1.0);
}
else
{
GL_EnableTexture(1);
// GL_MBind(1, dst_texture_ARB);
GL_MBind(1, glMedia.distTextureARB->texnum);
GL_Enable (GL_FRAGMENT_PROGRAM_ARB);
qglBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, fragment_programs[F_PROG_WARP]);
qglProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0, r_rgbscale->value, r_rgbscale->value, r_rgbscale->value, 1.0);
}
}
/* else if (texShaderWarpNV)
{
GL_SelectTexture(0);
GL_MBind(0, dst_texture_NV);
qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D);
GL_EnableTexture(1);
GL_MBind(1, image->texnum);
qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D);
qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_OFFSET_TEXTURE_2D_NV);
qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
qglTexEnvfv(GL_TEXTURE_SHADER_NV, GL_OFFSET_TEXTURE_MATRIX_NV, &args[1]);
// Psychospaz's lighting
// use this so that the new water isnt so bright anymore
// We won't bother check for the extensions availabiliy, as the hardware required
// to make it this far definately supports this as well
if (light)
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB);
GL_Enable (GL_TEXTURE_SHADER_NV);
} */
else
{
if (lightmapped)
{
GL_SelectTexture(0);
GL_MBind(0, image->texnum);
GL_EnableTexture(1);
if (r_fullbright->integer != 0)
GL_MBind (1, glMedia.whitetexture->texnum);
else
GL_MBind (1, glState.lightmap_textures + surf->lightmaptexturenum);
}
else
GL_Bind(image->texnum);
}
RB_DrawArrays ();
// MrG - texture shader waterwarp
if (texShaderWarpARB)
{
if (lightmapped) {
GL_SelectTexture(2);
GL_Disable (GL_FRAGMENT_PROGRAM_ARB);
GL_DisableTexture(2);
}
else {
GL_Disable (GL_FRAGMENT_PROGRAM_ARB);
GL_DisableTexture(1);
GL_SelectTexture(0);
}
}
/* else if (texShaderWarpNV)
{
GL_DisableTexture(1);
if (light)
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); // Psychospaz's lighting
GL_SelectTexture(0);
GL_Disable (GL_TEXTURE_SHADER_NV);
} */
// Psychospaz's vertex lighting
if (vertexLight) {
GL_ShadeModel (GL_FLAT);
if (!texShaderWarp)
R_SetVertexRGBScale (false);
}
RB_DrawMeshTris ();
rb_vertex = rb_index = 0;
}
/*
=============
R_DrawWarpSurface
Does a water warp on the pre-fragmented glpoly_t chain.
added Psychospaz's lightmaps on alpha surfaces
=============
*/
void R_DrawWarpSurface (msurface_t *surf, float alpha, qboolean render)
{
glpoly_t *p, *bp;
float s, t, scroll, dstscroll, rdt = r_newrefdef.time; // *v
float dstscroll_x, dstscroll_y;
mpolyvertex_t *v;
vec3_t point;
int i, texWidth, texHeight;
qboolean lightmapped = surf->isLightmapped && (r_worldmodel->bspFeatures & BSPF_WARPLIGHTMAPS);
qboolean vertexLight = r_warp_lighting->integer && !lightmapped && !r_fullbright->integer && !(surf->texinfo->flags & SURF_NOLIGHTENV);
/* qboolean texShaderNV = glConfig.NV_texshaders
&& ( (!glConfig.arb_fragment_program && r_pixel_shader_warp->integer)
|| (glConfig.arb_fragment_program && r_pixel_shader_warp->integer > 1) ); */
c_brush_surfs++;
texWidth = surf->texinfo->texWidth;
texHeight = surf->texinfo->texHeight;
dstscroll = -64 * ( (r_newrefdef.time*0.15) - (int)(r_newrefdef.time*0.15) );
dstscroll_x = 64 * sin (r_newrefdef.time * 0.08 * M_PI) * 0.45;
dstscroll_y = 64 * cos (r_newrefdef.time * 0.08 * M_PI) * 0.45;
if (surf->texinfo->flags & SURF_FLOWING)
scroll = -64 * ( (r_newrefdef.time*0.5) - (int)(r_newrefdef.time*0.5) );
else
scroll = 0.0f;
// rb_vertex = rb_index = 0;
for (bp = surf->polys; bp; bp = bp->next)
{
c_brush_polys += (bp->numverts-2);
p = bp;
if (RB_CheckArrayOverflow (p->numverts, (p->numverts-2)*3))
RB_RenderWarpSurface (surf);
for (i = 0; i < p->numverts-2; i++) {
indexArray[rb_index++] = rb_vertex;
indexArray[rb_index++] = rb_vertex+i+1;
indexArray[rb_index++] = rb_vertex+i+2;
}
// for (i=0, v=p->verts[0]; i<p->numverts; i++, v+=VERTEXSIZE)
for (i=0, v=&p->verts[0]; i<p->numverts; i++, v++)
{
#if !id386
// s = v[3] + r_turbsin[(int)((v[4]*0.125+rdt) * TURBSCALE) & 255];
// t = v[4] + r_turbsin[(int)((v[3]*0.125+rdt) * TURBSCALE) & 255];
s = v->texture_st[0] + r_turbsin[(int)((v->texture_st[1]*0.125+rdt) * TURBSCALE) & 255];
t = v->texture_st[1] + r_turbsin[(int)((v->texture_st[0]*0.125+rdt) * TURBSCALE) & 255];
#else
// s = v[3] + r_turbsin[Q_ftol( ((v[4]*0.125+rdt) * TURBSCALE) ) & 255];
// t = v[4] + r_turbsin[Q_ftol( ((v[3]*0.125+rdt) * TURBSCALE) ) & 255];
s = v->texture_st[0] + r_turbsin[Q_ftol( ((v->texture_st[1]*0.125+rdt) * TURBSCALE) ) & 255];
t = v->texture_st[1] + r_turbsin[Q_ftol( ((v->texture_st[0]*0.125+rdt) * TURBSCALE) ) & 255];
#endif
s += scroll;
// s *= DIV64;
// t *= DIV64;
s /= (float)texWidth;
t /= (float)texHeight;
//=============== Water waves ========================
// VectorCopy(v, point);
VectorCopy(v->xyz, point);
if ( r_waterwave->value > 0 && !(surf->texinfo->flags & SURF_FLOWING)
&& surf->plane->normal[2] > 0
&& surf->plane->normal[2] > surf->plane->normal[0]
&& surf->plane->normal[2] > surf->plane->normal[1] )
// point[2] = v[2] + r_waterwave->value * sin(v[0]*0.025+rdt) * sin(v[2]*0.05+rdt);
point[2] = v->xyz[2] + r_waterwave->value * sin(v->xyz[0]*0.025+rdt) * sin(v->xyz[2]*0.05+rdt);
//=============== End water waves ====================
// MrG - texture shader waterwarp
/* if (texShaderNV) {
// VA_SetElem2(texCoordArray[0][rb_vertex], (v[3]+dstscroll)*DIV64, v[4]*DIV64);
VA_SetElem2(texCoordArray[0][rb_vertex], (v>texture_st[0]+dstscroll)*DIV64, v>texture_st[1]*DIV64);
VA_SetElem2(texCoordArray[1][rb_vertex], s, t);
} */
if (lightmapped) {
VA_SetElem2(texCoordArray[0][rb_vertex], s, t);
VA_SetElem2(texCoordArray[1][rb_vertex], v->lightmap_st[0], v->lightmap_st[1]);
// VA_SetElem2(texCoordArray[2][rb_vertex], (v->texture_st[0]+dstscroll) / (float)texWidth, v->texture_st[1] / (float)texHeight);
VA_SetElem2(texCoordArray[2][rb_vertex], (v->texture_st[0]+dstscroll_x) / (float)texWidth, (v->texture_st[1]+dstscroll_y) / (float)texHeight);
}
else {
VA_SetElem2(texCoordArray[0][rb_vertex], s, t);
// VA_SetElem2(texCoordArray[1][rb_vertex], (v[3]+dstscroll)*DIV64, v[4]*DIV64);
VA_SetElem2(texCoordArray[1][rb_vertex], (v->texture_st[0]+dstscroll) / (float)texWidth, v->texture_st[1] / (float)texHeight);
}
// if (vertexLight && p->vertexlight && p->vertexlightset)
if (lightmapped)
VA_SetElem4(colorArray[rb_vertex], 1, 1, 1, alpha);
else if (vertexLight && p->vertexlightset)
VA_SetElem4(colorArray[rb_vertex],
// (float)(p->vertexlight[i*3+0]*DIV255),
// (float)(p->vertexlight[i*3+1]*DIV255),
// (float)(p->vertexlight[i*3+2]*DIV255), alpha);
(float)(v->lightcolor[0]*DIV255),
(float)(v->lightcolor[1]*DIV255),
(float)(v->lightcolor[2]*DIV255), alpha);
else
VA_SetElem4(colorArray[rb_vertex], glState.inverse_intensity, glState.inverse_intensity, glState.inverse_intensity, alpha);
VA_SetElem3(vertexArray[rb_vertex], point[0], point[1], point[2]);
rb_vertex++;
}
}
if (render)
RB_RenderWarpSurface (surf);
}