/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?).
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see .
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "../precompiled.h"
#pragma hdrstop
const float idMath::PI = 3.14159265358979323846f;
const float idMath::TWO_PI = 2.0f * PI;
const float idMath::HALF_PI = 0.5f * PI;
const float idMath::ONEFOURTH_PI = 0.25f * PI;
const float idMath::E = 2.71828182845904523536f;
const float idMath::SQRT_TWO = 1.41421356237309504880f;
const float idMath::SQRT_THREE = 1.73205080756887729352f;
const float idMath::SQRT_1OVER2 = 0.70710678118654752440f;
const float idMath::SQRT_1OVER3 = 0.57735026918962576450f;
const float idMath::M_DEG2RAD = PI / 180.0f;
const float idMath::M_RAD2DEG = 180.0f / PI;
const float idMath::M_SEC2MS = 1000.0f;
const float idMath::M_MS2SEC = 0.001f;
const float idMath::INFINITY = 1e30f;
const float idMath::FLT_EPSILON = 1.192092896e-07f;
bool idMath::initialized = false;
dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table
/*
===============
idMath::Init
===============
*/
void idMath::Init( void ) {
union _flint fi, fo;
for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) {
fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS);
fo.f = (float)( 1.0 / sqrt( fi.f ) );
iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
int maxBits = ( ( ( 1 << ( exponentBits - 1 ) ) - 1 ) << mantissaBits ) | ( ( 1 << mantissaBits ) - 1 );
int minBits = ( ( ( 1 << exponentBits ) - 2 ) << mantissaBits ) | 1;
float max = BitsToFloat( maxBits, exponentBits, mantissaBits );
float min = BitsToFloat( minBits, exponentBits, mantissaBits );
if ( f >= 0.0f ) {
if ( f >= max ) {
return maxBits;
} else if ( f <= min ) {
return minBits;
}
} else {
if ( f <= -max ) {
return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) );
} else if ( f >= -min ) {
return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) );
}
}
exponentBits--;
i = *reinterpret_cast(&f);
sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1;
exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 );
value = sign << ( 1 + exponentBits + mantissaBits );
value |= ( ( INTSIGNBITSET( exponent ) << exponentBits ) | ( abs( exponent ) & ( ( 1 << exponentBits ) - 1 ) ) ) << mantissaBits;
value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
return value;
}
/*
================
idMath::BitsToFloat
================
*/
float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) {
static int exponentSign[2] = { 1, -1 };
int sign, exponent, mantissa, value;
assert( exponentBits >= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
exponentBits--;
sign = i >> ( 1 + exponentBits + mantissaBits );
exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) * exponentSign[( i >> ( exponentBits + mantissaBits ) ) & 1];
mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa;
return *reinterpret_cast(&value);
}