/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../precompiled.h" #pragma hdrstop const float EPSILON = 1e-6f; /* ============= idPolynomial::Laguer ============= */ int idPolynomial::Laguer( const idComplex *coef, const int degree, idComplex &x ) const { const int MT = 10, MAX_ITERATIONS = MT * 8; static const float frac[] = { 0.0f, 0.5f, 0.25f, 0.75f, 0.13f, 0.38f, 0.62f, 0.88f, 1.0f }; int i, j; float abx, abp, abm, err; idComplex dx, cx, b, d, f, g, s, gps, gms, g2; for ( i = 1; i <= MAX_ITERATIONS; i++ ) { b = coef[degree]; err = b.Abs(); d.Zero(); f.Zero(); abx = x.Abs(); for ( j = degree - 1; j >= 0; j-- ) { f = x * f + d; d = x * d + b; b = x * b + coef[j]; err = b.Abs() + abx * err; } if ( b.Abs() < err * EPSILON ) { return i; } g = d / b; g2 = g * g; s = ( ( degree - 1 ) * ( degree * ( g2 - 2.0f * f / b ) - g2 ) ).Sqrt(); gps = g + s; gms = g - s; abp = gps.Abs(); abm = gms.Abs(); if ( abp < abm ) { gps = gms; } if ( Max( abp, abm ) > 0.0f ) { dx = degree / gps; } else { dx = idMath::Exp( idMath::Log( 1.0f + abx ) ) * idComplex( idMath::Cos( i ), idMath::Sin( i ) ); } cx = x - dx; if ( x == cx ) { return i; } if ( i % MT == 0 ) { x = cx; } else { x -= frac[i/MT] * dx; } } return i; } /* ============= idPolynomial::GetRoots ============= */ int idPolynomial::GetRoots( idComplex *roots ) const { int i, j; idComplex x, b, c, *coef; coef = (idComplex *) _alloca16( ( degree + 1 ) * sizeof( idComplex ) ); for ( i = 0; i <= degree; i++ ) { coef[i].Set( coefficient[i], 0.0f ); } for ( i = degree - 1; i >= 0; i-- ) { x.Zero(); Laguer( coef, i + 1, x ); if ( idMath::Fabs( x.i ) < 2.0f * EPSILON * idMath::Fabs( x.r ) ) { x.i = 0.0f; } roots[i] = x; b = coef[i+1]; for ( j = i; j >= 0; j-- ) { c = coef[j]; coef[j] = b; b = x * b + c; } } for ( i = 0; i <= degree; i++ ) { coef[i].Set( coefficient[i], 0.0f ); } for ( i = 0; i < degree; i++ ) { Laguer( coef, degree, roots[i] ); } for ( i = 1; i < degree; i++ ) { x = roots[i]; for ( j = i - 1; j >= 0; j-- ) { if ( roots[j].r <= x.r ) { break; } roots[j+1] = roots[j]; } roots[j+1] = x; } return degree; } /* ============= idPolynomial::GetRoots ============= */ int idPolynomial::GetRoots( float *roots ) const { int i, num; idComplex *complexRoots; switch( degree ) { case 0: return 0; case 1: return GetRoots1( coefficient[1], coefficient[0], roots ); case 2: return GetRoots2( coefficient[2], coefficient[1], coefficient[0], roots ); case 3: return GetRoots3( coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots ); case 4: return GetRoots4( coefficient[4], coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots ); } // The Abel-Ruffini theorem states that there is no general solution // in radicals to polynomial equations of degree five or higher. // A polynomial equation can be solved by radicals if and only if // its Galois group is a solvable group. complexRoots = (idComplex *) _alloca16( degree * sizeof( idComplex ) ); GetRoots( complexRoots ); for ( num = i = 0; i < degree; i++ ) { if ( complexRoots[i].i == 0.0f ) { roots[i] = complexRoots[i].r; num++; } } return num; } /* ============= idPolynomial::ToString ============= */ const char *idPolynomial::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } /* ============= idPolynomial::Test ============= */ void idPolynomial::Test( void ) { int i, num; float roots[4], value; idComplex complexRoots[4], complexValue; idPolynomial p; p = idPolynomial( -5.0f, 4.0f ); num = p.GetRoots( roots ); for ( i = 0; i < num; i++ ) { value = p.GetValue( roots[i] ); assert( idMath::Fabs( value ) < 1e-4f ); } p = idPolynomial( -5.0f, 4.0f, 3.0f ); num = p.GetRoots( roots ); for ( i = 0; i < num; i++ ) { value = p.GetValue( roots[i] ); assert( idMath::Fabs( value ) < 1e-4f ); } p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f ); num = p.GetRoots( roots ); for ( i = 0; i < num; i++ ) { value = p.GetValue( roots[i] ); assert( idMath::Fabs( value ) < 1e-4f ); } p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f ); num = p.GetRoots( roots ); for ( i = 0; i < num; i++ ) { value = p.GetValue( roots[i] ); assert( idMath::Fabs( value ) < 1e-4f ); } p = idPolynomial( -5.0f, 4.0f, 3.0f, 2.0f, 1.0f ); num = p.GetRoots( roots ); for ( i = 0; i < num; i++ ) { value = p.GetValue( roots[i] ); assert( idMath::Fabs( value ) < 1e-4f ); } p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f ); num = p.GetRoots( complexRoots ); for ( i = 0; i < num; i++ ) { complexValue = p.GetValue( complexRoots[i] ); assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f ); } p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f ); num = p.GetRoots( complexRoots ); for ( i = 0; i < num; i++ ) { complexValue = p.GetValue( complexRoots[i] ); assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f ); } }