/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../precompiled.h" #pragma hdrstop #include "Winding2D.h" /* ============ GetAxialBevel ============ */ bool GetAxialBevel( const idVec3 &plane1, const idVec3 &plane2, const idVec2 &point, idVec3 &bevel ) { if ( FLOATSIGNBITSET( plane1.x ) ^ FLOATSIGNBITSET( plane2.x ) ) { if ( idMath::Fabs( plane1.x ) > 0.1f && idMath::Fabs( plane2.x ) > 0.1f ) { bevel.x = 0.0f; if ( FLOATSIGNBITSET( plane1.y ) ) { bevel.y = -1.0f; } else { bevel.y = 1.0f; } bevel.z = - ( point.x * bevel.x + point.y * bevel.y ); return true; } } if ( FLOATSIGNBITSET( plane1.y ) ^ FLOATSIGNBITSET( plane2.y ) ) { if ( idMath::Fabs( plane1.y ) > 0.1f && idMath::Fabs( plane2.y ) > 0.1f ) { bevel.y = 0.0f; if ( FLOATSIGNBITSET( plane1.x ) ) { bevel.x = -1.0f; } else { bevel.x = 1.0f; } bevel.z = - ( point.x * bevel.x + point.y * bevel.y ); return true; } } return false; } /* ============ idWinding2D::ExpandForAxialBox ============ */ void idWinding2D::ExpandForAxialBox( const idVec2 bounds[2] ) { int i, j, numPlanes; idVec2 v; idVec3 planes[MAX_POINTS_ON_WINDING_2D], plane, bevel; // get planes for the edges and add bevels for ( numPlanes = i = 0; i < numPoints; i++ ) { j = (i+1) % numPoints; if ( ( p[j] - p[i] ).LengthSqr() < 0.01f ) { continue; } plane = Plane2DFromPoints( p[i], p[j], true ); if ( i ) { if ( GetAxialBevel( planes[numPlanes-1], plane, p[i], bevel ) ) { planes[numPlanes++] = bevel; } } assert( numPlanes < MAX_POINTS_ON_WINDING_2D ); planes[numPlanes++] = plane; } if ( GetAxialBevel( planes[numPlanes-1], planes[0], p[0], bevel ) ) { planes[numPlanes++] = bevel; } // expand the planes for ( i = 0; i < numPlanes; i++ ) { v.x = bounds[ FLOATSIGNBITSET( planes[i].x ) ].x; v.y = bounds[ FLOATSIGNBITSET( planes[i].y ) ].y; planes[i].z += v.x * planes[i].x + v.y * planes[i].y; } // get intersection points of the planes for ( numPoints = i = 0; i < numPlanes; i++ ) { if ( Plane2DIntersection( planes[(i+numPlanes-1) % numPlanes], planes[i], p[numPoints] ) ) { numPoints++; } } } /* ============ idWinding2D::Expand ============ */ void idWinding2D::Expand( const float d ) { int i; idVec2 edgeNormals[MAX_POINTS_ON_WINDING_2D]; for ( i = 0; i < numPoints; i++ ) { idVec2 &start = p[i]; idVec2 &end = p[(i+1)%numPoints]; edgeNormals[i].x = start.y - end.y; edgeNormals[i].y = end.x - start.x; edgeNormals[i].Normalize(); edgeNormals[i] *= d; } for ( i = 0; i < numPoints; i++ ) { p[i] += edgeNormals[i] + edgeNormals[(i+numPoints-1)%numPoints]; } } /* ============= idWinding2D::Split ============= */ int idWinding2D::Split( const idVec3 &plane, const float epsilon, idWinding2D **front, idWinding2D **back ) const { float dists[MAX_POINTS_ON_WINDING_2D]; byte sides[MAX_POINTS_ON_WINDING_2D]; int counts[3]; float dot; int i, j; const idVec2 * p1, *p2; idVec2 mid; idWinding2D * f; idWinding2D * b; int maxpts; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; *front = *back = NULL; // if nothing at the front of the clipping plane if ( !counts[SIDE_FRONT] ) { *back = Copy(); return SIDE_BACK; } // if nothing at the back of the clipping plane if ( !counts[SIDE_BACK] ) { *front = Copy(); return SIDE_FRONT; } maxpts = numPoints+4; // cant use counts[0]+2 because of fp grouping errors *front = f = new idWinding2D; *back = b = new idWinding2D; for ( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if ( sides[i] == SIDE_ON ) { f->p[f->numPoints] = *p1; f->numPoints++; b->p[b->numPoints] = *p1; b->numPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { f->p[f->numPoints] = *p1; f->numPoints++; } if ( sides[i] == SIDE_BACK ) { b->p[b->numPoints] = *p1; b->numPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } // generate a split point p2 = &p[(i+1)%numPoints]; // always calculate the split going from the same side // or minor epsilon issues can happen if ( sides[i] == SIDE_FRONT ) { dot = dists[i] / ( dists[i] - dists[i+1] ); for ( j = 0; j < 2; j++ ) { // avoid round off error when possible if ( plane[j] == 1.0f ) { mid[j] = plane.z; } else if ( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = (*p1)[j] + dot * ((*p2)[j] - (*p1)[j]); } } } else { dot = dists[i+1] / ( dists[i+1] - dists[i] ); for ( j = 0; j < 2; j++ ) { // avoid round off error when possible if ( plane[j] == 1.0f ) { mid[j] = plane.z; } else if ( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = (*p2)[j] + dot * ( (*p1)[j] - (*p2)[j] ); } } } f->p[f->numPoints] = mid; f->numPoints++; b->p[b->numPoints] = mid; b->numPoints++; } return SIDE_CROSS; } /* ============ idWinding2D::ClipInPlace ============ */ bool idWinding2D::ClipInPlace( const idVec3 &plane, const float epsilon, const bool keepOn ) { int i, j, maxpts, newNumPoints; int sides[MAX_POINTS_ON_WINDING_2D+1], counts[3]; float dot, dists[MAX_POINTS_ON_WINDING_2D+1]; idVec2 *p1, *p2, mid, newPoints[MAX_POINTS_ON_WINDING_2D+4]; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if ( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return true; } if ( !counts[SIDE_FRONT] ) { numPoints = 0; return false; } if ( !counts[SIDE_BACK] ) { return true; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newNumPoints = 0; for ( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if ( newNumPoints+1 > maxpts ) { return true; // can't split -- fall back to original } if ( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } if ( newNumPoints+1 > maxpts ) { return true; // can't split -- fall back to original } // generate a split point p2 = &p[(i+1)%numPoints]; dot = dists[i] / (dists[i] - dists[i+1]); for ( j = 0; j < 2; j++ ) { // avoid round off error when possible if ( plane[j] == 1.0f ) { mid[j] = plane.z; } else if ( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = (*p1)[j] + dot * ((*p2)[j] - (*p1)[j]); } } newPoints[newNumPoints] = mid; newNumPoints++; } if ( newNumPoints >= MAX_POINTS_ON_WINDING_2D ) { return true; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof(idVec2) ); return true; } /* ============= idWinding2D::Copy ============= */ idWinding2D *idWinding2D::Copy( void ) const { idWinding2D *w; w = new idWinding2D; w->numPoints = numPoints; memcpy( w->p, p, numPoints * sizeof( p[0] ) ); return w; } /* ============= idWinding2D::Reverse ============= */ idWinding2D *idWinding2D::Reverse( void ) const { idWinding2D *w; int i; w = new idWinding2D; w->numPoints = numPoints; for ( i = 0; i < numPoints; i++ ) { w->p[ numPoints - i - 1 ] = p[i]; } return w; } /* ============ idWinding2D::GetArea ============ */ float idWinding2D::GetArea( void ) const { int i; idVec2 d1, d2; float total; total = 0.0f; for ( i = 2; i < numPoints; i++ ) { d1 = p[i-1] - p[0]; d2 = p[i] - p[0]; total += d1.x * d2.y - d1.y * d2.x; } return total * 0.5f; } /* ============ idWinding2D::GetCenter ============ */ idVec2 idWinding2D::GetCenter( void ) const { int i; idVec2 center; center.Zero(); for ( i = 0; i < numPoints; i++ ) { center += p[i]; } center *= ( 1.0f / numPoints ); return center; } /* ============ idWinding2D::GetRadius ============ */ float idWinding2D::GetRadius( const idVec2 ¢er ) const { int i; float radius, r; idVec2 dir; radius = 0.0f; for ( i = 0; i < numPoints; i++ ) { dir = p[i] - center; r = dir * dir; if ( r > radius ) { radius = r; } } return idMath::Sqrt( radius ); } /* ============ idWinding2D::GetBounds ============ */ void idWinding2D::GetBounds( idVec2 bounds[2] ) const { int i; if ( !numPoints ) { bounds[0].x = bounds[0].y = idMath::INFINITY; bounds[1].x = bounds[1].y = -idMath::INFINITY; return; } bounds[0] = bounds[1] = p[0]; for ( i = 1; i < numPoints; i++ ) { if ( p[i].x < bounds[0].x ) { bounds[0].x = p[i].x; } else if ( p[i].x > bounds[1].x ) { bounds[1].x = p[i].x; } if ( p[i].y < bounds[0].y ) { bounds[0].y = p[i].y; } else if ( p[i].y > bounds[1].y ) { bounds[1].y = p[i].y; } } } /* ============= idWinding2D::IsTiny ============= */ #define EDGE_LENGTH 0.2f bool idWinding2D::IsTiny( void ) const { int i; float len; idVec2 delta; int edges; edges = 0; for ( i = 0; i < numPoints; i++ ) { delta = p[(i+1)%numPoints] - p[i]; len = delta.Length(); if ( len > EDGE_LENGTH ) { if ( ++edges == 3 ) { return false; } } } return true; } /* ============= idWinding2D::IsHuge ============= */ bool idWinding2D::IsHuge( void ) const { int i, j; for ( i = 0; i < numPoints; i++ ) { for ( j = 0; j < 2; j++ ) { if ( p[i][j] <= MIN_WORLD_COORD || p[i][j] >= MAX_WORLD_COORD ) { return true; } } } return false; } /* ============= idWinding2D::Print ============= */ void idWinding2D::Print( void ) const { int i; for ( i = 0; i < numPoints; i++ ) { idLib::common->Printf( "(%5.1f, %5.1f)\n", p[i][0], p[i][1] ); } } /* ============= idWinding2D::PlaneDistance ============= */ float idWinding2D::PlaneDistance( const idVec3 &plane ) const { int i; float d, min, max; min = idMath::INFINITY; max = -min; for ( i = 0; i < numPoints; i++ ) { d = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( d < min ) { min = d; if ( FLOATSIGNBITSET( min ) & FLOATSIGNBITNOTSET( max ) ) { return 0.0f; } } if ( d > max ) { max = d; if ( FLOATSIGNBITSET( min ) & FLOATSIGNBITNOTSET( max ) ) { return 0.0f; } } } if ( FLOATSIGNBITNOTSET( min ) ) { return min; } if ( FLOATSIGNBITSET( max ) ) { return max; } return 0.0f; } /* ============= idWinding2D::PlaneSide ============= */ int idWinding2D::PlaneSide( const idVec3 &plane, const float epsilon ) const { bool front, back; int i; float d; front = false; back = false; for ( i = 0; i < numPoints; i++ ) { d = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( d < -epsilon ) { if ( front ) { return SIDE_CROSS; } back = true; continue; } else if ( d > epsilon ) { if ( back ) { return SIDE_CROSS; } front = true; continue; } } if ( back ) { return SIDE_BACK; } if ( front ) { return SIDE_FRONT; } return SIDE_ON; } /* ============ idWinding2D::PointInside ============ */ bool idWinding2D::PointInside( const idVec2 &point, const float epsilon ) const { int i; float d; idVec3 plane; for ( i = 0; i < numPoints; i++ ) { plane = Plane2DFromPoints( p[i], p[(i+1) % numPoints] ); d = plane.x * point.x + plane.y * point.y + plane.z; if ( d > epsilon ) { return false; } } return true; } /* ============ idWinding2D::LineIntersection ============ */ bool idWinding2D::LineIntersection( const idVec2 &start, const idVec2 &end ) const { int i, numEdges; int sides[MAX_POINTS_ON_WINDING_2D+1], counts[3]; float d1, d2, epsilon = 0.1f; idVec3 plane, edges[2]; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; plane = Plane2DFromPoints( start, end ); for ( i = 0; i < numPoints; i++ ) { d1 = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( d1 > epsilon ) { sides[i] = SIDE_FRONT; } else if ( d1 < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; if ( !counts[SIDE_FRONT] ) { return false; } if ( !counts[SIDE_BACK] ) { return false; } numEdges = 0; for ( i = 0; i < numPoints; i++ ) { if ( sides[i] != sides[i+1] && sides[i+1] != SIDE_ON ) { edges[numEdges++] = Plane2DFromPoints( p[i], p[(i+1)%numPoints] ); if ( numEdges >= 2 ) { break; } } } if ( numEdges < 2 ) { return false; } d1 = edges[0].x * start.x + edges[0].y * start.y + edges[0].z; d2 = edges[0].x * end.x + edges[0].y * end.y + edges[0].z; if ( FLOATSIGNBITNOTSET( d1 ) & FLOATSIGNBITNOTSET( d2 ) ) { return false; } d1 = edges[1].x * start.x + edges[1].y * start.y + edges[1].z; d2 = edges[1].x * end.x + edges[1].y * end.y + edges[1].z; if ( FLOATSIGNBITNOTSET( d1 ) & FLOATSIGNBITNOTSET( d2 ) ) { return false; } return true; } /* ============ idWinding2D::RayIntersection ============ */ bool idWinding2D::RayIntersection( const idVec2 &start, const idVec2 &dir, float &scale1, float &scale2, int *edgeNums ) const { int i, numEdges, localEdgeNums[2]; int sides[MAX_POINTS_ON_WINDING_2D+1], counts[3]; float d1, d2, epsilon = 0.1f; idVec3 plane, edges[2]; scale1 = scale2 = 0.0f; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; plane = Plane2DFromVecs( start, dir ); for ( i = 0; i < numPoints; i++ ) { d1 = plane.x * p[i].x + plane.y * p[i].y + plane.z; if ( d1 > epsilon ) { sides[i] = SIDE_FRONT; } else if ( d1 < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; if ( !counts[SIDE_FRONT] ) { return false; } if ( !counts[SIDE_BACK] ) { return false; } numEdges = 0; for ( i = 0; i < numPoints; i++ ) { if ( sides[i] != sides[i+1] && sides[i+1] != SIDE_ON ) { localEdgeNums[numEdges] = i; edges[numEdges++] = Plane2DFromPoints( p[i], p[(i+1)%numPoints] ); if ( numEdges >= 2 ) { break; } } } if ( numEdges < 2 ) { return false; } d1 = edges[0].x * start.x + edges[0].y * start.y + edges[0].z; d2 = - ( edges[0].x * dir.x + edges[0].y * dir.y ); if ( d2 == 0.0f ) { return false; } scale1 = d1 / d2; d1 = edges[1].x * start.x + edges[1].y * start.y + edges[1].z; d2 = - ( edges[1].x * dir.x + edges[1].y * dir.y ); if ( d2 == 0.0f ) { return false; } scale2 = d1 / d2; if ( idMath::Fabs( scale1 ) > idMath::Fabs( scale2 ) ) { idSwap( scale1, scale2 ); idSwap( localEdgeNums[0], localEdgeNums[1] ); } if ( edgeNums ) { edgeNums[0] = localEdgeNums[0]; edgeNums[1] = localEdgeNums[1]; } return true; }