/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../idlib/precompiled.h" #pragma hdrstop #include "tr_local.h" const char *imageFilter[] = { "GL_LINEAR_MIPMAP_NEAREST", "GL_LINEAR_MIPMAP_LINEAR", "GL_NEAREST", "GL_LINEAR", "GL_NEAREST_MIPMAP_NEAREST", "GL_NEAREST_MIPMAP_LINEAR", NULL }; idCVar idImageManager::image_filter( "image_filter", imageFilter[1], CVAR_RENDERER | CVAR_ARCHIVE, "changes texture filtering on mipmapped images", imageFilter, idCmdSystem::ArgCompletion_String ); idCVar idImageManager::image_anisotropy( "image_anisotropy", "1", CVAR_RENDERER | CVAR_ARCHIVE, "set the maximum texture anisotropy if available" ); idCVar idImageManager::image_lodbias( "image_lodbias", "0", CVAR_RENDERER | CVAR_ARCHIVE, "change lod bias on mipmapped images" ); idCVar idImageManager::image_downSize( "image_downSize", "0", CVAR_RENDERER | CVAR_ARCHIVE, "controls texture downsampling" ); idCVar idImageManager::image_forceDownSize( "image_forceDownSize", "0", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "" ); idCVar idImageManager::image_roundDown( "image_roundDown", "1", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "round bad sizes down to nearest power of two" ); idCVar idImageManager::image_colorMipLevels( "image_colorMipLevels", "0", CVAR_RENDERER | CVAR_BOOL, "development aid to see texture mip usage" ); idCVar idImageManager::image_preload( "image_preload", "1", CVAR_RENDERER | CVAR_BOOL | CVAR_ARCHIVE, "if 0, dynamically load all images" ); idCVar idImageManager::image_useCompression( "image_useCompression", "1", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "0 = force everything to high quality" ); idCVar idImageManager::image_useAllFormats( "image_useAllFormats", "1", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "allow alpha/intensity/luminance/luminance+alpha" ); idCVar idImageManager::image_useNormalCompression( "image_useNormalCompression", "2", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_INTEGER, "2 = use rxgb compression for normal maps, 1 = use 256 color compression for normal maps if available" ); idCVar idImageManager::image_usePrecompressedTextures( "image_usePrecompressedTextures", "1", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "use .dds files if present" ); idCVar idImageManager::image_writePrecompressedTextures( "image_writePrecompressedTextures", "0", CVAR_RENDERER | CVAR_BOOL, "write .dds files if necessary" ); idCVar idImageManager::image_writeNormalTGA( "image_writeNormalTGA", "0", CVAR_RENDERER | CVAR_BOOL, "write .tgas of the final normal maps for debugging" ); idCVar idImageManager::image_writeNormalTGAPalletized( "image_writeNormalTGAPalletized", "0", CVAR_RENDERER | CVAR_BOOL, "write .tgas of the final palletized normal maps for debugging" ); idCVar idImageManager::image_writeTGA( "image_writeTGA", "0", CVAR_RENDERER | CVAR_BOOL, "write .tgas of the non normal maps for debugging" ); idCVar idImageManager::image_useOffLineCompression( "image_useOfflineCompression", "0", CVAR_RENDERER | CVAR_BOOL, "write a batch file for offline compression of DDS files" ); idCVar idImageManager::image_cacheMinK( "image_cacheMinK", "200", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_INTEGER, "maximum KB of precompressed files to read at specification time" ); idCVar idImageManager::image_cacheMegs( "image_cacheMegs", "20", CVAR_RENDERER | CVAR_ARCHIVE, "maximum MB set aside for temporary loading of full-sized precompressed images" ); idCVar idImageManager::image_useCache( "image_useCache", "0", CVAR_RENDERER | CVAR_ARCHIVE | CVAR_BOOL, "1 = do background load image caching" ); idCVar idImageManager::image_showBackgroundLoads( "image_showBackgroundLoads", "0", CVAR_RENDERER | CVAR_BOOL, "1 = print number of outstanding background loads" ); idCVar idImageManager::image_downSizeSpecular( "image_downSizeSpecular", "0", CVAR_RENDERER | CVAR_ARCHIVE, "controls specular downsampling" ); idCVar idImageManager::image_downSizeBump( "image_downSizeBump", "0", CVAR_RENDERER | CVAR_ARCHIVE, "controls normal map downsampling" ); idCVar idImageManager::image_downSizeSpecularLimit( "image_downSizeSpecularLimit", "64", CVAR_RENDERER | CVAR_ARCHIVE, "controls specular downsampled limit" ); idCVar idImageManager::image_downSizeBumpLimit( "image_downSizeBumpLimit", "128", CVAR_RENDERER | CVAR_ARCHIVE, "controls normal map downsample limit" ); idCVar idImageManager::image_ignoreHighQuality( "image_ignoreHighQuality", "0", CVAR_RENDERER | CVAR_ARCHIVE, "ignore high quality setting on materials" ); idCVar idImageManager::image_downSizeLimit( "image_downSizeLimit", "256", CVAR_RENDERER | CVAR_ARCHIVE, "controls diffuse map downsample limit" ); // do this with a pointer, in case we want to make the actual manager // a private virtual subclass idImageManager imageManager; idImageManager *globalImages = &imageManager; enum IMAGE_CLASSIFICATION { IC_NPC, IC_WEAPON, IC_MONSTER, IC_MODELGEOMETRY, IC_ITEMS, IC_MODELSOTHER, IC_GUIS, IC_WORLDGEOMETRY, IC_OTHER, IC_COUNT }; struct imageClassificate_t { const char *rootPath; const char *desc; int type; int maxWidth; int maxHeight; }; typedef idList< int > intList; const imageClassificate_t IC_Info[] = { { "models/characters", "Characters", IC_NPC, 512, 512 }, { "models/weapons", "Weapons", IC_WEAPON, 512, 512 }, { "models/monsters", "Monsters", IC_MONSTER, 512, 512 }, { "models/mapobjects", "Model Geometry", IC_MODELGEOMETRY, 512, 512 }, { "models/items", "Items", IC_ITEMS, 512, 512 }, { "models", "Other model textures", IC_MODELSOTHER, 512, 512 }, { "guis/assets", "Guis", IC_GUIS, 256, 256 }, { "textures", "World Geometry", IC_WORLDGEOMETRY, 256, 256 }, { "", "Other", IC_OTHER, 256, 256 } }; static int ClassifyImage( const char *name ) { idStr str; str = name; for ( int i = 0; i < IC_COUNT; i++ ) { if ( str.Find( IC_Info[i].rootPath, false ) == 0 ) { return IC_Info[i].type; } } return IC_OTHER; } /* ================ R_RampImage Creates a 0-255 ramp image ================ */ static void R_RampImage( idImage *image ) { int x; byte data[256][4]; for (x=0 ; x<256 ; x++) { data[x][0] = data[x][1] = data[x][2] = data[x][3] = x; } image->GenerateImage( (byte *)data, 256, 1, TF_NEAREST, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================ R_SpecularTableImage Creates a ramp that matches our fudged specular calculation ================ */ static void R_SpecularTableImage( idImage *image ) { int x; byte data[256][4]; for (x=0 ; x<256 ; x++) { float f = x/255.f; #if 0 f = pow(f, 16); #else // this is the behavior of the hacked up fragment programs that // can't really do a power function f = (f-0.75)*4; if ( f < 0 ) { f = 0; } f = f * f; #endif int b = (int)(f * 255); data[x][0] = data[x][1] = data[x][2] = data[x][3] = b; } image->GenerateImage( (byte *)data, 256, 1, TF_LINEAR, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================ R_Specular2DTableImage Create a 2D table that calculates ( reflection dot , specularity ) ================ */ static void R_Specular2DTableImage( idImage *image ) { int x, y; byte data[256][256][4]; memset( data, 0, sizeof( data ) ); for ( x = 0 ; x < 256 ; x++ ) { float f = x / 255.0f; for ( y = 0; y < 256; y++ ) { int b = (int)( pow( f, y ) * 255.0f ); if ( b == 0 ) { // as soon as b equals zero all remaining values in this column are going to be zero // we early out to avoid pow() underflows break; } data[y][x][0] = data[y][x][1] = data[y][x][2] = data[y][x][3] = b; } } image->GenerateImage( (byte *)data, 256, 256, TF_LINEAR, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================ R_AlphaRampImage Creates a 0-255 ramp image ================ */ static void R_AlphaRampImage( idImage *image ) { int x; byte data[256][4]; for (x=0 ; x<256 ; x++) { data[x][0] = data[x][1] = data[x][2] = 255; data[x][3] = x; } image->GenerateImage( (byte *)data, 256, 1, TF_NEAREST, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================== R_CreateDefaultImage the default image will be grey with a white box outline to allow you to see the mapping coordinates on a surface ================== */ #define DEFAULT_SIZE 16 void idImage::MakeDefault() { int x, y; byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; if ( com_developer.GetBool() ) { // grey center for ( y = 0 ; y < DEFAULT_SIZE ; y++ ) { for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[y][x][0] = 32; data[y][x][1] = 32; data[y][x][2] = 32; data[y][x][3] = 255; } } // white border for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[0][x][0] = data[0][x][1] = data[0][x][2] = data[0][x][3] = 255; data[x][0][0] = data[x][0][1] = data[x][0][2] = data[x][0][3] = 255; data[DEFAULT_SIZE-1][x][0] = data[DEFAULT_SIZE-1][x][1] = data[DEFAULT_SIZE-1][x][2] = data[DEFAULT_SIZE-1][x][3] = 255; data[x][DEFAULT_SIZE-1][0] = data[x][DEFAULT_SIZE-1][1] = data[x][DEFAULT_SIZE-1][2] = data[x][DEFAULT_SIZE-1][3] = 255; } } else { for ( y = 0 ; y < DEFAULT_SIZE ; y++ ) { for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[y][x][0] = 0; data[y][x][1] = 0; data[y][x][2] = 0; data[y][x][3] = 0; } } } GenerateImage( (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, true, TR_REPEAT, TD_DEFAULT ); defaulted = true; } static void R_DefaultImage( idImage *image ) { image->MakeDefault(); } static void R_WhiteImage( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // solid white texture memset( data, 255, sizeof( data ) ); image->GenerateImage( (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, false, TR_REPEAT, TD_DEFAULT ); } static void R_BlackImage( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // solid black texture memset( data, 0, sizeof( data ) ); image->GenerateImage( (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, false, TR_REPEAT, TD_DEFAULT ); } // the size determines how far away from the edge the blocks start fading static const int BORDER_CLAMP_SIZE = 32; static void R_BorderClampImage( idImage *image ) { byte data[BORDER_CLAMP_SIZE][BORDER_CLAMP_SIZE][4]; // solid white texture with a single pixel black border memset( data, 255, sizeof( data ) ); for ( int i = 0 ; i < BORDER_CLAMP_SIZE ; i++ ) { data[i][0][0] = data[i][0][1] = data[i][0][2] = data[i][0][3] = data[i][BORDER_CLAMP_SIZE-1][0] = data[i][BORDER_CLAMP_SIZE-1][1] = data[i][BORDER_CLAMP_SIZE-1][2] = data[i][BORDER_CLAMP_SIZE-1][3] = data[0][i][0] = data[0][i][1] = data[0][i][2] = data[0][i][3] = data[BORDER_CLAMP_SIZE-1][i][0] = data[BORDER_CLAMP_SIZE-1][i][1] = data[BORDER_CLAMP_SIZE-1][i][2] = data[BORDER_CLAMP_SIZE-1][i][3] = 0; } image->GenerateImage( (byte *)data, BORDER_CLAMP_SIZE, BORDER_CLAMP_SIZE, TF_LINEAR /* TF_NEAREST */, false, TR_CLAMP_TO_BORDER, TD_DEFAULT ); if ( !glConfig.isInitialized ) { // can't call qglTexParameterfv yet return; } // explicit zero border float color[4]; color[0] = color[1] = color[2] = color[3] = 0; qglTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, color ); } static void R_RGBA8Image( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; memset( data, 0, sizeof( data ) ); data[0][0][0] = 16; data[0][0][1] = 32; data[0][0][2] = 48; data[0][0][3] = 96; image->GenerateImage( (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, false, TR_REPEAT, TD_HIGH_QUALITY ); } static void R_RGB8Image( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; memset( data, 0, sizeof( data ) ); data[0][0][0] = 16; data[0][0][1] = 32; data[0][0][2] = 48; data[0][0][3] = 255; image->GenerateImage( (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, false, TR_REPEAT, TD_HIGH_QUALITY ); } static void R_AlphaNotchImage( idImage *image ) { byte data[2][4]; // this is used for alpha test clip planes data[0][0] = data[0][1] = data[0][2] = 255; data[0][3] = 0; data[1][0] = data[1][1] = data[1][2] = 255; data[1][3] = 255; image->GenerateImage( (byte *)data, 2, 1, TF_NEAREST, false, TR_CLAMP, TD_HIGH_QUALITY ); } static void R_FlatNormalImage( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; int i; int red = ( globalImages->image_useNormalCompression.GetInteger() == 1 ) ? 0 : 3; int alpha = ( red == 0 ) ? 3 : 0; // flat normal map for default bunp mapping for ( i = 0 ; i < 4 ; i++ ) { data[0][i][red] = 128; data[0][i][1] = 128; data[0][i][2] = 255; data[0][i][alpha] = 255; } image->GenerateImage( (byte *)data, 2, 2, TF_DEFAULT, true, TR_REPEAT, TD_HIGH_QUALITY ); } static void R_AmbientNormalImage( idImage *image ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; int i; int red = ( globalImages->image_useNormalCompression.GetInteger() == 1 ) ? 0 : 3; int alpha = ( red == 0 ) ? 3 : 0; // flat normal map for default bunp mapping for ( i = 0 ; i < 4 ; i++ ) { data[0][i][red] = (byte)(255 * tr.ambientLightVector[0]); data[0][i][1] = (byte)(255 * tr.ambientLightVector[1]); data[0][i][2] = (byte)(255 * tr.ambientLightVector[2]); data[0][i][alpha] = 255; } const byte *pics[6]; for ( i = 0 ; i < 6 ; i++ ) { pics[i] = data[0][0]; } // this must be a cube map for fragment programs to simply substitute for the normalization cube map image->GenerateCubeImage( pics, 2, TF_DEFAULT, true, TD_HIGH_QUALITY ); } static void CreateSquareLight( void ) { byte *buffer; int x, y; int dx, dy; int d; int width, height; width = height = 128; buffer = (byte *)R_StaticAlloc( 128 * 128 * 4 ); for ( x = 0 ; x < 128 ; x++ ) { if ( x < 32 ) { dx = 32 - x; } else if ( x > 96 ) { dx = x - 96; } else { dx = 0; } for ( y = 0 ; y < 128 ; y++ ) { if ( y < 32 ) { dy = 32 - y; } else if ( y > 96 ) { dy = y - 96; } else { dy = 0; } d = (byte)idMath::Sqrt( dx * dx + dy * dy ); if ( d > 32 ) { d = 32; } d = 255 - d * 8; if ( d < 0 ) { d = 0; } buffer[(y*128+x)*4+0] = buffer[(y*128+x)*4+1] = buffer[(y*128+x)*4+2] = d; buffer[(y*128+x)*4+3] = 255; } } R_WriteTGA( "lights/squarelight.tga", buffer, width, height ); R_StaticFree( buffer ); } static void CreateFlashOff( void ) { byte *buffer; int x, y; int d; int width, height; width = 256; height = 4; buffer = (byte *)R_StaticAlloc( width * height * 4 ); for ( x = 0 ; x < width ; x++ ) { for ( y = 0 ; y < height ; y++ ) { d = 255 - ( x * 256 / width ); buffer[(y*width+x)*4+0] = buffer[(y*width+x)*4+1] = buffer[(y*width+x)*4+2] = d; buffer[(y*width+x)*4+3] = 255; } } R_WriteTGA( "lights/flashoff.tga", buffer, width, height ); R_StaticFree( buffer ); } /* =============== CreatePitFogImage =============== */ void CreatePitFogImage( void ) { byte data[16][16][4]; int i, j; memset( data, 0, sizeof( data ) ); for ( i = 0 ; i < 16 ; i++ ) { int a; #if 0 if ( i > 14 ) { a = 0; } else #endif { a = i * 255 / 15; if ( a > 255 ) { a = 255; } } for ( j = 0 ; j < 16 ; j++ ) { data[j][i][0] = data[j][i][1] = data[j][i][2] = 255; data[j][i][3] = a; } } R_WriteTGA( "shapes/pitFalloff.tga", data[0][0], 16, 16 ); } /* =============== CreatealphaSquareImage =============== */ void CreatealphaSquareImage( void ) { byte data[16][16][4]; int i, j; for ( i = 0 ; i < 16 ; i++ ) { int a; for ( j = 0 ; j < 16 ; j++ ) { if ( i == 0 || i == 15 || j == 0 || j == 15 ) { a = 0; } else { a = 255; } data[j][i][0] = data[j][i][1] = data[j][i][2] = 255; data[j][i][3] = a; } } R_WriteTGA( "shapes/alphaSquare.tga", data[0][0], 16, 16 ); } #define NORMAL_MAP_SIZE 32 /*** NORMALIZATION CUBE MAP CONSTRUCTION ***/ /* Given a cube map face index, cube map size, and integer 2D face position, * return the cooresponding normalized vector. */ static void getCubeVector(int i, int cubesize, int x, int y, float *vector) { float s, t, sc, tc, mag; s = ((float)x + 0.5) / (float)cubesize; t = ((float)y + 0.5) / (float)cubesize; sc = s*2.0 - 1.0; tc = t*2.0 - 1.0; switch (i) { case 0: vector[0] = 1.0; vector[1] = -tc; vector[2] = -sc; break; case 1: vector[0] = -1.0; vector[1] = -tc; vector[2] = sc; break; case 2: vector[0] = sc; vector[1] = 1.0; vector[2] = tc; break; case 3: vector[0] = sc; vector[1] = -1.0; vector[2] = -tc; break; case 4: vector[0] = sc; vector[1] = -tc; vector[2] = 1.0; break; case 5: vector[0] = -sc; vector[1] = -tc; vector[2] = -1.0; break; } mag = idMath::InvSqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]); vector[0] *= mag; vector[1] *= mag; vector[2] *= mag; } /* Initialize a cube map texture object that generates RGB values * that when expanded to a [-1,1] range in the register combiners * form a normalized vector matching the per-pixel vector used to * access the cube map. */ static void makeNormalizeVectorCubeMap( idImage *image ) { float vector[3]; int i, x, y; byte *pixels[6]; int size; size = NORMAL_MAP_SIZE; pixels[0] = (GLubyte*) Mem_Alloc(size*size*4*6); for (i = 0; i < 6; i++) { pixels[i] = pixels[0] + i*size*size*4; for (y = 0; y < size; y++) { for (x = 0; x < size; x++) { getCubeVector(i, size, x, y, vector); pixels[i][4*(y*size+x) + 0] = (byte)(128 + 127*vector[0]); pixels[i][4*(y*size+x) + 1] = (byte)(128 + 127*vector[1]); pixels[i][4*(y*size+x) + 2] = (byte)(128 + 127*vector[2]); pixels[i][4*(y*size+x) + 3] = 255; } } } image->GenerateCubeImage( (const byte **)pixels, size, TF_LINEAR, false, TD_HIGH_QUALITY ); Mem_Free(pixels[0]); } /* ================ R_CreateNoFalloffImage This is a solid white texture that is zero clamped. ================ */ static void R_CreateNoFalloffImage( idImage *image ) { int x,y; byte data[16][FALLOFF_TEXTURE_SIZE][4]; memset( data, 0, sizeof( data ) ); for (x=1 ; xGenerateImage( (byte *)data, FALLOFF_TEXTURE_SIZE, 16, TF_DEFAULT, false, TR_CLAMP_TO_ZERO, TD_HIGH_QUALITY ); } /* ================ R_FogImage We calculate distance correctly in two planes, but the third will still be projection based ================ */ const int FOG_SIZE = 128; void R_FogImage( idImage *image ) { int x,y; byte data[FOG_SIZE][FOG_SIZE][4]; int b; float step[256]; int i; float remaining = 1.0; for ( i = 0 ; i < 256 ; i++ ) { step[i] = remaining; remaining *= 0.982f; } for (x=0 ; x 255 ) { b = 255; } b = (byte)(255 * ( 1.0 - step[b] )); if ( x == 0 || x == FOG_SIZE-1 || y == 0 || y == FOG_SIZE-1 ) { b = 255; // avoid clamping issues } data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = b; } } image->GenerateImage( (byte *)data, FOG_SIZE, FOG_SIZE, TF_LINEAR, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================ FogFraction Height values below zero are inside the fog volume ================ */ static const float RAMP_RANGE = 8; static const float DEEP_RANGE = -30; static float FogFraction( float viewHeight, float targetHeight ) { float total = idMath::Fabs( targetHeight - viewHeight ); // return targetHeight >= 0 ? 0 : 1.0; // only ranges that cross the ramp range are special if ( targetHeight > 0 && viewHeight > 0 ) { return 0.0; } if ( targetHeight < -RAMP_RANGE && viewHeight < -RAMP_RANGE ) { return 1.0; } float above; if ( targetHeight > 0 ) { above = targetHeight; } else if ( viewHeight > 0 ) { above = viewHeight; } else { above = 0; } float rampTop, rampBottom; if ( viewHeight > targetHeight ) { rampTop = viewHeight; rampBottom = targetHeight; } else { rampTop = targetHeight; rampBottom = viewHeight; } if ( rampTop > 0 ) { rampTop = 0; } if ( rampBottom < -RAMP_RANGE ) { rampBottom = -RAMP_RANGE; } float rampSlope = 1.0 / RAMP_RANGE; if ( !total ) { return -viewHeight * rampSlope; } float ramp = ( 1.0 - ( rampTop * rampSlope + rampBottom * rampSlope ) * -0.5 ) * ( rampTop - rampBottom ); float frac = ( total - above - ramp ) / total; // after it gets moderately deep, always use full value float deepest = viewHeight < targetHeight ? viewHeight : targetHeight; float deepFrac = deepest / DEEP_RANGE; if ( deepFrac >= 1.0 ) { return 1.0; } frac = frac * ( 1.0 - deepFrac ) + deepFrac; return frac; } /* ================ R_FogEnterImage Modulate the fog alpha density based on the distance of the start and end points to the terminator plane ================ */ void R_FogEnterImage( idImage *image ) { int x,y; byte data[FOG_ENTER_SIZE][FOG_ENTER_SIZE][4]; int b; for (x=0 ; x 255 ) { b = 255; } data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = b; } } // if mipmapped, acutely viewed surfaces fade wrong image->GenerateImage( (byte *)data, FOG_ENTER_SIZE, FOG_ENTER_SIZE, TF_LINEAR, false, TR_CLAMP, TD_HIGH_QUALITY ); } /* ================ R_QuadraticImage ================ */ static const int QUADRATIC_WIDTH = 32; static const int QUADRATIC_HEIGHT = 4; void R_QuadraticImage( idImage *image ) { int x,y; byte data[QUADRATIC_HEIGHT][QUADRATIC_WIDTH][4]; int b; for (x=0 ; x 255 ) { b = 255; } data[y][x][0] = data[y][x][1] = data[y][x][2] = b; data[y][x][3] = 255; } } image->GenerateImage( (byte *)data, QUADRATIC_WIDTH, QUADRATIC_HEIGHT, TF_DEFAULT, false, TR_CLAMP, TD_HIGH_QUALITY ); } //===================================================================== typedef struct { char *name; int minimize, maximize; } filterName_t; /* =============== ChangeTextureFilter This resets filtering on all loaded images New images will automatically pick up the current values. =============== */ void idImageManager::ChangeTextureFilter( void ) { int i; idImage *glt; const char *string; static filterName_t textureFilters[] = { {"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR}, {"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}, {"GL_NEAREST", GL_NEAREST, GL_NEAREST}, {"GL_LINEAR", GL_LINEAR, GL_LINEAR}, {"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST}, {"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST} }; // if these are changed dynamically, it will force another ChangeTextureFilter image_filter.ClearModified(); image_anisotropy.ClearModified(); image_lodbias.ClearModified(); string = image_filter.GetString(); for ( i = 0; i < 6; i++ ) { if ( !idStr::Icmp( textureFilters[i].name, string ) ) { break; } } if ( i == 6 ) { common->Warning( "bad r_textureFilter: '%s'", string); // default to LINEAR_MIPMAP_NEAREST i = 0; } // set the values for future images textureMinFilter = textureFilters[i].minimize; textureMaxFilter = textureFilters[i].maximize; textureAnisotropy = image_anisotropy.GetFloat(); if ( textureAnisotropy < 1 ) { textureAnisotropy = 1; } else if ( textureAnisotropy > glConfig.maxTextureAnisotropy ) { textureAnisotropy = glConfig.maxTextureAnisotropy; } textureLODBias = image_lodbias.GetFloat(); // change all the existing mipmap texture objects with default filtering for ( i = 0 ; i < images.Num() ; i++ ) { unsigned int texEnum = GL_TEXTURE_2D; glt = images[ i ]; switch( glt->type ) { case TT_2D: texEnum = GL_TEXTURE_2D; break; case TT_3D: texEnum = GL_TEXTURE_3D; break; case TT_CUBIC: texEnum = GL_TEXTURE_CUBE_MAP_EXT; break; } // make sure we don't start a background load if ( glt->texnum == idImage::TEXTURE_NOT_LOADED ) { continue; } glt->Bind(); if ( glt->filter == TF_DEFAULT ) { qglTexParameterf(texEnum, GL_TEXTURE_MIN_FILTER, globalImages->textureMinFilter ); qglTexParameterf(texEnum, GL_TEXTURE_MAG_FILTER, globalImages->textureMaxFilter ); } if ( glConfig.anisotropicAvailable ) { qglTexParameterf(texEnum, GL_TEXTURE_MAX_ANISOTROPY_EXT, globalImages->textureAnisotropy ); } if ( glConfig.textureLODBiasAvailable ) { qglTexParameterf(texEnum, GL_TEXTURE_LOD_BIAS_EXT, globalImages->textureLODBias ); } } } /* =============== idImage::Reload =============== */ void idImage::Reload( bool checkPrecompressed, bool force ) { // always regenerate functional images if ( generatorFunction ) { common->DPrintf( "regenerating %s.\n", imgName.c_str() ); generatorFunction( this ); return; } // check file times if ( !force ) { ID_TIME_T current; if ( cubeFiles != CF_2D ) { R_LoadCubeImages( imgName, cubeFiles, NULL, NULL, ¤t ); } else { // get the current values R_LoadImageProgram( imgName, NULL, NULL, NULL, ¤t ); } if ( current <= timestamp ) { return; } } common->DPrintf( "reloading %s.\n", imgName.c_str() ); PurgeImage(); // force no precompressed image check, which will cause it to be reloaded // from source, and another precompressed file generated. // Load is from the front end, so the back end must be synced ActuallyLoadImage( checkPrecompressed, false ); } /* =============== R_ReloadImages_f Regenerate all images that came directly from files that have changed, so any saved changes will show up in place. New r_texturesize/r_texturedepth variables will take effect on reload reloadImages =============== */ void R_ReloadImages_f( const idCmdArgs &args ) { int i; idImage *image; bool all; bool checkPrecompressed; // this probably isn't necessary... globalImages->ChangeTextureFilter(); all = false; checkPrecompressed = false; // if we are doing this as a vid_restart, look for precompressed like normal if ( args.Argc() == 2 ) { if ( !idStr::Icmp( args.Argv(1), "all" ) ) { all = true; } else if ( !idStr::Icmp( args.Argv(1), "reload" ) ) { all = true; checkPrecompressed = true; } else { common->Printf( "USAGE: reloadImages \n" ); return; } } for ( i = 0 ; i < globalImages->images.Num() ; i++ ) { image = globalImages->images[ i ]; image->Reload( checkPrecompressed, all ); } } typedef struct { idImage *image; int size; } sortedImage_t; /* ======================= R_QsortImageSizes ======================= */ static int R_QsortImageSizes( const void *a, const void *b ) { const sortedImage_t *ea, *eb; ea = (sortedImage_t *)a; eb = (sortedImage_t *)b; if ( ea->size > eb->size ) { return -1; } if ( ea->size < eb->size ) { return 1; } return idStr::Icmp( ea->image->imgName, eb->image->imgName ); } /* =============== R_ListImages_f =============== */ void R_ListImages_f( const idCmdArgs &args ) { int i, j, partialSize; idImage *image; int totalSize; int count = 0; int matchTag = 0; bool uncompressedOnly = false; bool unloaded = false; bool partial = false; bool cached = false; bool uncached = false; bool failed = false; bool touched = false; bool sorted = false; bool duplicated = false; bool byClassification = false; bool overSized = false; if ( args.Argc() == 1 ) { } else if ( args.Argc() == 2 ) { if ( idStr::Icmp( args.Argv( 1 ), "uncompressed" ) == 0 ) { uncompressedOnly = true; } else if ( idStr::Icmp( args.Argv( 1 ), "sorted" ) == 0 ) { sorted = true; } else if ( idStr::Icmp( args.Argv( 1 ), "partial" ) == 0 ) { partial = true; } else if ( idStr::Icmp( args.Argv( 1 ), "unloaded" ) == 0 ) { unloaded = true; } else if ( idStr::Icmp( args.Argv( 1 ), "cached" ) == 0 ) { cached = true; } else if ( idStr::Icmp( args.Argv( 1 ), "uncached" ) == 0 ) { uncached = true; } else if ( idStr::Icmp( args.Argv( 1 ), "tagged" ) == 0 ) { matchTag = 1; } else if ( idStr::Icmp( args.Argv( 1 ), "duplicated" ) == 0 ) { duplicated = true; } else if ( idStr::Icmp( args.Argv( 1 ), "touched" ) == 0 ) { touched = true; } else if ( idStr::Icmp( args.Argv( 1 ), "classify" ) == 0 ) { byClassification = true; sorted = true; } else if ( idStr::Icmp( args.Argv( 1 ), "oversized" ) == 0 ) { byClassification = true; sorted = true; overSized = true; } else { failed = true; } } else { failed = true; } if ( failed ) { common->Printf( "usage: listImages [ sorted | partial | unloaded | cached | uncached | tagged | duplicated | touched | classify | showOverSized ]\n" ); return; } const char *header = " -w-- -h-- filt -fmt-- wrap size --name-------\n"; common->Printf( "\n%s", header ); totalSize = 0; sortedImage_t *sortedArray = (sortedImage_t *)alloca( sizeof( sortedImage_t ) * globalImages->images.Num() ); for ( i = 0 ; i < globalImages->images.Num() ; i++ ) { image = globalImages->images[ i ]; if ( uncompressedOnly ) { if ( ( image->internalFormat >= GL_COMPRESSED_RGB_S3TC_DXT1_EXT && image->internalFormat <= GL_COMPRESSED_RGBA_S3TC_DXT5_EXT ) || image->internalFormat == GL_COLOR_INDEX8_EXT ) { continue; } } if ( matchTag && image->classification != matchTag ) { continue; } if ( unloaded && image->texnum != idImage::TEXTURE_NOT_LOADED ) { continue; } if ( partial && !image->isPartialImage ) { continue; } if ( cached && ( !image->partialImage || image->texnum == idImage::TEXTURE_NOT_LOADED ) ) { continue; } if ( uncached && ( !image->partialImage || image->texnum != idImage::TEXTURE_NOT_LOADED ) ) { continue; } // only print duplicates (from mismatched wrap / clamp, etc) if ( duplicated ) { int j; for ( j = i+1 ; j < globalImages->images.Num() ; j++ ) { if ( idStr::Icmp( image->imgName, globalImages->images[ j ]->imgName ) == 0 ) { break; } } if ( j == globalImages->images.Num() ) { continue; } } // "listimages touched" will list only images bound since the last "listimages touched" call if ( touched ) { if ( image->bindCount == 0 ) { continue; } image->bindCount = 0; } if ( sorted ) { sortedArray[count].image = image; sortedArray[count].size = image->StorageSize(); } else { common->Printf( "%4i:", i ); image->Print(); } totalSize += image->StorageSize(); count++; } if ( sorted ) { qsort( sortedArray, count, sizeof( sortedImage_t ), R_QsortImageSizes ); partialSize = 0; for ( i = 0 ; i < count ; i++ ) { common->Printf( "%4i:", i ); sortedArray[i].image->Print(); partialSize += sortedArray[i].image->StorageSize(); if ( ( (i+1) % 10 ) == 0 ) { common->Printf( "-------- %5.1f of %5.1f megs --------\n", partialSize / (1024*1024.0), totalSize / (1024*1024.0) ); } } } common->Printf( "%s", header ); common->Printf( " %i images (%i total)\n", count, globalImages->images.Num() ); common->Printf( " %5.1f total megabytes of images\n\n\n", totalSize / (1024*1024.0) ); if ( byClassification ) { idList< int > classifications[IC_COUNT]; for ( i = 0 ; i < count ; i++ ) { int cl = ClassifyImage( sortedArray[i].image->imgName ); classifications[ cl ].Append( i ); } for ( i = 0; i < IC_COUNT; i++ ) { partialSize = 0; idList< int > overSizedList; for ( j = 0; j < classifications[ i ].Num(); j++ ) { partialSize += sortedArray[ classifications[ i ][ j ] ].image->StorageSize(); if ( overSized ) { if ( sortedArray[ classifications[ i ][ j ] ].image->uploadWidth > IC_Info[i].maxWidth && sortedArray[ classifications[ i ][ j ] ].image->uploadHeight > IC_Info[i].maxHeight ) { overSizedList.Append( classifications[ i ][ j ] ); } } } common->Printf ( " Classification %s contains %i images using %5.1f megabytes\n", IC_Info[i].desc, classifications[i].Num(), partialSize / ( 1024*1024.0 ) ); if ( overSized && overSizedList.Num() ) { common->Printf( " The following images may be oversized\n" ); for ( j = 0; j < overSizedList.Num(); j++ ) { common->Printf( " " ); sortedArray[ overSizedList[ j ] ].image->Print(); common->Printf( "\n" ); } } } } } /* ================== SetNormalPalette Create a 256 color palette to be used by compressed normal maps ================== */ void idImageManager::SetNormalPalette( void ) { int i, j; idVec3 v; float t; //byte temptable[768]; byte *temptable = compressedPalette; int compressedToOriginal[16]; // make an ad-hoc separable compression mapping scheme for ( i = 0 ; i < 8 ; i++ ) { float f, y; f = ( i + 1 ) / 8.5; y = idMath::Sqrt( 1.0 - f * f ); y = 1.0 - y; compressedToOriginal[7-i] = 127 - (int)( y * 127 + 0.5 ); compressedToOriginal[8+i] = 128 + (int)( y * 127 + 0.5 ); } for ( i = 0 ; i < 256 ; i++ ) { if ( i <= compressedToOriginal[0] ) { originalToCompressed[i] = 0; } else if ( i >= compressedToOriginal[15] ) { originalToCompressed[i] = 15; } else { for ( j = 0 ; j < 14 ; j++ ) { if ( i <= compressedToOriginal[j+1] ) { break; } } if ( i - compressedToOriginal[j] < compressedToOriginal[j+1] - i ) { originalToCompressed[i] = j; } else { originalToCompressed[i] = j + 1; } } } #if 0 for ( i = 0; i < 16; i++ ) { for ( j = 0 ; j < 16 ; j++ ) { v[0] = ( i - 7.5 ) / 8; v[1] = ( j - 7.5 ) / 8; t = 1.0 - ( v[0]*v[0] + v[1]*v[1] ); if ( t < 0 ) { t = 0; } v[2] = idMath::Sqrt( t ); temptable[(i*16+j)*3+0] = 128 + floor( 127 * v[0] + 0.5 ); temptable[(i*16+j)*3+1] = 128 + floor( 127 * v[1] ); temptable[(i*16+j)*3+2] = 128 + floor( 127 * v[2] ); } } #else for ( i = 0; i < 16; i++ ) { for ( j = 0 ; j < 16 ; j++ ) { v[0] = ( compressedToOriginal[i] - 127.5 ) / 128; v[1] = ( compressedToOriginal[j] - 127.5 ) / 128; t = 1.0 - ( v[0]*v[0] + v[1]*v[1] ); if ( t < 0 ) { t = 0; } v[2] = idMath::Sqrt( t ); temptable[(i*16+j)*3+0] = (byte)(128 + floor( 127 * v[0] + 0.5 )); temptable[(i*16+j)*3+1] = (byte)(128 + floor( 127 * v[1] )); temptable[(i*16+j)*3+2] = (byte)(128 + floor( 127 * v[2] )); } } #endif // color 255 will be the "nullnormal" color for no reflection temptable[255*3+0] = temptable[255*3+1] = temptable[255*3+2] = 128; if ( !glConfig.sharedTexturePaletteAvailable ) { return; } qglColorTableEXT( GL_SHARED_TEXTURE_PALETTE_EXT, GL_RGB, 256, GL_RGB, GL_UNSIGNED_BYTE, temptable ); qglEnable( GL_SHARED_TEXTURE_PALETTE_EXT ); } /* ============== AllocImage Allocates an idImage, adds it to the list, copies the name, and adds it to the hash chain. ============== */ idImage *idImageManager::AllocImage( const char *name ) { idImage *image; int hash; if (strlen(name) >= MAX_IMAGE_NAME ) { common->Error ("idImageManager::AllocImage: \"%s\" is too long\n", name); } hash = idStr( name ).FileNameHash(); image = new idImage; images.Append( image ); image->hashNext = imageHashTable[hash]; imageHashTable[hash] = image; image->imgName = name; return image; } /* ================== ImageFromFunction Images that are procedurally generated are allways specified with a callback which must work at any time, allowing the OpenGL system to be completely regenerated if needed. ================== */ idImage *idImageManager::ImageFromFunction( const char *_name, void (*generatorFunction)( idImage *image ) ) { idStr name; idImage *image; int hash; if ( !name ) { common->FatalError( "idImageManager::ImageFromFunction: NULL name" ); } // strip any .tga file extensions from anywhere in the _name name = _name; name.Replace( ".tga", "" ); name.BackSlashesToSlashes(); // see if the image already exists hash = name.FileNameHash(); for ( image = imageHashTable[hash] ; image; image = image->hashNext ) { if ( name.Icmp( image->imgName ) == 0 ) { if ( image->generatorFunction != generatorFunction ) { common->DPrintf( "WARNING: reused image %s with mixed generators\n", name.c_str() ); } return image; } } // create the image and issue the callback image = AllocImage( name ); image->generatorFunction = generatorFunction; if ( image_preload.GetBool() ) { // check for precompressed, load is from the front end image->referencedOutsideLevelLoad = true; image->ActuallyLoadImage( true, false ); } return image; } /* =============== ImageFromFile Finds or loads the given image, always returning a valid image pointer. Loading of the image may be deferred for dynamic loading. ============== */ idImage *idImageManager::ImageFromFile( const char *_name, textureFilter_t filter, bool allowDownSize, textureRepeat_t repeat, textureDepth_t depth, cubeFiles_t cubeMap ) { idStr name; idImage *image; int hash; if ( !_name || !_name[0] || idStr::Icmp( _name, "default" ) == 0 || idStr::Icmp( _name, "_default" ) == 0 ) { declManager->MediaPrint( "DEFAULTED\n" ); return globalImages->defaultImage; } // strip any .tga file extensions from anywhere in the _name, including image program parameters name = _name; name.Replace( ".tga", "" ); name.BackSlashesToSlashes(); // // see if the image is already loaded, unless we // are in a reloadImages call // hash = name.FileNameHash(); for ( image = imageHashTable[hash]; image; image = image->hashNext ) { if ( name.Icmp( image->imgName ) == 0 ) { // the built in's, like _white and _flat always match the other options if ( name[0] == '_' ) { return image; } if ( image->cubeFiles != cubeMap ) { common->Error( "Image '%s' has been referenced with conflicting cube map states", _name ); } if ( image->filter != filter || image->repeat != repeat ) { // we might want to have the system reset these parameters on every bind and // share the image data continue; } if ( image->allowDownSize == allowDownSize && image->depth == depth ) { // note that it is used this level load image->levelLoadReferenced = true; if ( image->partialImage != NULL ) { image->partialImage->levelLoadReferenced = true; } return image; } // the same image is being requested, but with a different allowDownSize or depth // so pick the highest of the two and reload the old image with those parameters if ( !image->allowDownSize ) { allowDownSize = false; } if ( image->depth > depth ) { depth = image->depth; } if ( image->allowDownSize == allowDownSize && image->depth == depth ) { // the already created one is already the highest quality image->levelLoadReferenced = true; if ( image->partialImage != NULL ) { image->partialImage->levelLoadReferenced = true; } return image; } image->allowDownSize = allowDownSize; image->depth = depth; image->levelLoadReferenced = true; if ( image->partialImage != NULL ) { image->partialImage->levelLoadReferenced = true; } if ( image_preload.GetBool() && !insideLevelLoad ) { image->referencedOutsideLevelLoad = true; image->ActuallyLoadImage( true, false ); // check for precompressed, load is from front end declManager->MediaPrint( "%ix%i %s (reload for mixed referneces)\n", image->uploadWidth, image->uploadHeight, image->imgName.c_str() ); } return image; } } // // create a new image // image = AllocImage( name ); // HACK: to allow keep fonts from being mip'd, as new ones will be introduced with localization // this keeps us from having to make a material for each font tga if ( name.Find( "fontImage_") >= 0 ) { allowDownSize = false; } image->allowDownSize = allowDownSize; image->repeat = repeat; image->depth = depth; image->type = TT_2D; image->cubeFiles = cubeMap; image->filter = filter; image->levelLoadReferenced = true; // also create a shrunken version if we are going to dynamically cache the full size image if ( image->ShouldImageBePartialCached() ) { // if we only loaded part of the file, create a new idImage for the shrunken version image->partialImage = new idImage; image->partialImage->allowDownSize = allowDownSize; image->partialImage->repeat = repeat; image->partialImage->depth = depth; image->partialImage->type = TT_2D; image->partialImage->cubeFiles = cubeMap; image->partialImage->filter = filter; image->partialImage->levelLoadReferenced = true; // we don't bother hooking this into the hash table for lookup, but we do add it to the manager // list for listImages globalImages->images.Append( image->partialImage ); image->partialImage->imgName = image->imgName; image->partialImage->isPartialImage = true; // let the background file loader know that we can load image->precompressedFile = true; if ( image_preload.GetBool() && !insideLevelLoad ) { image->partialImage->ActuallyLoadImage( true, false ); // check for precompressed, load is from front end declManager->MediaPrint( "%ix%i %s\n", image->partialImage->uploadWidth, image->partialImage->uploadHeight, image->imgName.c_str() ); } else { declManager->MediaPrint( "%s\n", image->imgName.c_str() ); } return image; } // load it if we aren't in a level preload if ( image_preload.GetBool() && !insideLevelLoad ) { image->referencedOutsideLevelLoad = true; image->ActuallyLoadImage( true, false ); // check for precompressed, load is from front end declManager->MediaPrint( "%ix%i %s\n", image->uploadWidth, image->uploadHeight, image->imgName.c_str() ); } else { declManager->MediaPrint( "%s\n", image->imgName.c_str() ); } return image; } /* =============== idImageManager::GetImage =============== */ idImage *idImageManager::GetImage( const char *_name ) const { idStr name; idImage *image; int hash; if ( !_name || !_name[0] || idStr::Icmp( _name, "default" ) == 0 || idStr::Icmp( _name, "_default" ) == 0 ) { declManager->MediaPrint( "DEFAULTED\n" ); return globalImages->defaultImage; } // strip any .tga file extensions from anywhere in the _name, including image program parameters name = _name; name.Replace( ".tga", "" ); name.BackSlashesToSlashes(); // // look in loaded images // hash = name.FileNameHash(); for ( image = imageHashTable[hash]; image; image = image->hashNext ) { if ( name.Icmp( image->imgName ) == 0 ) { return image; } } return NULL; } /* =============== PurgeAllImages =============== */ void idImageManager::PurgeAllImages() { int i; idImage *image; for ( i = 0; i < images.Num() ; i++ ) { image = images[i]; image->PurgeImage(); } } /* =============== ReloadAllImages =============== */ void idImageManager::ReloadAllImages() { idCmdArgs args; // build the compressed normal map palette SetNormalPalette(); args.TokenizeString( "reloadImages reload", false ); R_ReloadImages_f( args ); } /* =============== R_CombineCubeImages_f Used to combine animations of six separate tga files into a serials of 6x taller tga files, for preparation to roq compress =============== */ void R_CombineCubeImages_f( const idCmdArgs &args ) { if ( args.Argc() != 2 ) { common->Printf( "usage: combineCubeImages \n" ); common->Printf( " combines basename[1-6][0001-9999].tga to basenameCM[0001-9999].tga\n" ); common->Printf( " 1: forward 2:right 3:back 4:left 5:up 6:down\n" ); return; } idStr baseName = args.Argv( 1 ); common->SetRefreshOnPrint( true ); for ( int frameNum = 1 ; frameNum < 10000 ; frameNum++ ) { char filename[MAX_IMAGE_NAME]; byte *pics[6]; int width, height; int side; int orderRemap[6] = { 1,3,4,2,5,6 }; for ( side = 0 ; side < 6 ; side++ ) { sprintf( filename, "%s%i%04i.tga", baseName.c_str(), orderRemap[side], frameNum ); common->Printf( "reading %s\n", filename ); R_LoadImage( filename, &pics[side], &width, &height, NULL, true ); if ( !pics[side] ) { common->Printf( "not found.\n" ); break; } // convert from "camera" images to native cube map images switch( side ) { case 0: // forward R_RotatePic( pics[side], width); break; case 1: // back R_RotatePic( pics[side], width); R_HorizontalFlip( pics[side], width, height ); R_VerticalFlip( pics[side], width, height ); break; case 2: // left R_VerticalFlip( pics[side], width, height ); break; case 3: // right R_HorizontalFlip( pics[side], width, height ); break; case 4: // up R_RotatePic( pics[side], width); break; case 5: // down R_RotatePic( pics[side], width); break; } } if ( side != 6 ) { for ( int i = 0 ; i < side ; side++ ) { Mem_Free( pics[side] ); } break; } byte *combined = (byte *)Mem_Alloc( width*height*6*4 ); for ( side = 0 ; side < 6 ; side++ ) { memcpy( combined+width*height*4*side, pics[side], width*height*4 ); Mem_Free( pics[side] ); } sprintf( filename, "%sCM%04i.tga", baseName.c_str(), frameNum ); common->Printf( "writing %s\n", filename ); R_WriteTGA( filename, combined, width, height*6 ); Mem_Free( combined ); } common->SetRefreshOnPrint( false ); } /* ================== idImage::StartBackgroundImageLoad ================== */ void idImage::StartBackgroundImageLoad() { if ( imageManager.numActiveBackgroundImageLoads >= idImageManager::MAX_BACKGROUND_IMAGE_LOADS ) { return; } if ( globalImages->image_showBackgroundLoads.GetBool() ) { common->Printf( "idImage::StartBackgroundImageLoad: %s\n", imgName.c_str() ); } backgroundLoadInProgress = true; if ( !precompressedFile ) { common->Warning( "idImageManager::StartBackgroundImageLoad: %s wasn't a precompressed file", imgName.c_str() ); return; } bglNext = globalImages->backgroundImageLoads; globalImages->backgroundImageLoads = this; char filename[MAX_IMAGE_NAME]; ImageProgramStringToCompressedFileName( imgName, filename ); bgl.completed = false; bgl.f = fileSystem->OpenFileRead( filename ); if ( !bgl.f ) { common->Warning( "idImageManager::StartBackgroundImageLoad: Couldn't load %s", imgName.c_str() ); return; } bgl.file.position = 0; bgl.file.length = bgl.f->Length(); if ( bgl.file.length < sizeof( ddsFileHeader_t ) ) { common->Warning( "idImageManager::StartBackgroundImageLoad: %s had a bad file length", imgName.c_str() ); return; } bgl.file.buffer = R_StaticAlloc( bgl.file.length ); fileSystem->BackgroundDownload( &bgl ); imageManager.numActiveBackgroundImageLoads++; // purge some images if necessary int totalSize = 0; for ( idImage *check = globalImages->cacheLRU.cacheUsageNext ; check != &globalImages->cacheLRU ; check = check->cacheUsageNext ) { totalSize += check->StorageSize(); } int needed = this->StorageSize(); while ( ( totalSize + needed ) > globalImages->image_cacheMegs.GetFloat() * 1024 * 1024 ) { // purge the least recently used idImage *check = globalImages->cacheLRU.cacheUsagePrev; if ( check->texnum != TEXTURE_NOT_LOADED ) { totalSize -= check->StorageSize(); if ( globalImages->image_showBackgroundLoads.GetBool() ) { common->Printf( "purging %s\n", check->imgName.c_str() ); } check->PurgeImage(); } // remove it from the cached list check->cacheUsageNext->cacheUsagePrev = check->cacheUsagePrev; check->cacheUsagePrev->cacheUsageNext = check->cacheUsageNext; check->cacheUsageNext = NULL; check->cacheUsagePrev = NULL; } } /* ================== R_CompleteBackgroundImageLoads Do we need to worry about vid_restarts here? ================== */ void idImageManager::CompleteBackgroundImageLoads() { idImage *remainingList = NULL; idImage *next; for ( idImage *image = backgroundImageLoads ; image ; image = next ) { next = image->bglNext; if ( image->bgl.completed ) { numActiveBackgroundImageLoads--; fileSystem->CloseFile( image->bgl.f ); // upload the image image->UploadPrecompressedImage( (byte *)image->bgl.file.buffer, image->bgl.file.length ); R_StaticFree( image->bgl.file.buffer ); if ( image_showBackgroundLoads.GetBool() ) { common->Printf( "R_CompleteBackgroundImageLoad: %s\n", image->imgName.c_str() ); } } else { image->bglNext = remainingList; remainingList = image; } } if ( image_showBackgroundLoads.GetBool() ) { static int prev; if ( numActiveBackgroundImageLoads != prev ) { prev = numActiveBackgroundImageLoads; common->Printf( "background Loads: %i\n", numActiveBackgroundImageLoads ); } } backgroundImageLoads = remainingList; } /* =============== CheckCvars =============== */ void idImageManager::CheckCvars() { // textureFilter stuff if ( image_filter.IsModified() || image_anisotropy.IsModified() || image_lodbias.IsModified() ) { ChangeTextureFilter(); image_filter.ClearModified(); image_anisotropy.ClearModified(); image_lodbias.ClearModified(); } } /* =============== SumOfUsedImages =============== */ int idImageManager::SumOfUsedImages() { int total; int i; idImage *image; total = 0; for ( i = 0; i < images.Num(); i++ ) { image = images[i]; if ( image->frameUsed == backEnd.frameCount ) { total += image->StorageSize(); } } return total; } /* =============== BindNull =============== */ void idImageManager::BindNull() { tmu_t *tmu; tmu = &backEnd.glState.tmu[backEnd.glState.currenttmu]; RB_LogComment( "BindNull()\n" ); if ( tmu->textureType == TT_CUBIC ) { qglDisable( GL_TEXTURE_CUBE_MAP_EXT ); } else if ( tmu->textureType == TT_3D ) { qglDisable( GL_TEXTURE_3D ); } else if ( tmu->textureType == TT_2D ) { qglDisable( GL_TEXTURE_2D ); } tmu->textureType = TT_DISABLED; } /* =============== Init =============== */ void idImageManager::Init() { memset(imageHashTable, 0, sizeof(imageHashTable)); images.Resize( 1024, 1024 ); // clear the cached LRU cacheLRU.cacheUsageNext = &cacheLRU; cacheLRU.cacheUsagePrev = &cacheLRU; // set default texture filter modes ChangeTextureFilter(); // create built in images defaultImage = ImageFromFunction( "_default", R_DefaultImage ); whiteImage = ImageFromFunction( "_white", R_WhiteImage ); blackImage = ImageFromFunction( "_black", R_BlackImage ); borderClampImage = ImageFromFunction( "_borderClamp", R_BorderClampImage ); flatNormalMap = ImageFromFunction( "_flat", R_FlatNormalImage ); ambientNormalMap = ImageFromFunction( "_ambient", R_AmbientNormalImage ); specularTableImage = ImageFromFunction( "_specularTable", R_SpecularTableImage ); specular2DTableImage = ImageFromFunction( "_specular2DTable", R_Specular2DTableImage ); rampImage = ImageFromFunction( "_ramp", R_RampImage ); alphaRampImage = ImageFromFunction( "_alphaRamp", R_RampImage ); alphaNotchImage = ImageFromFunction( "_alphaNotch", R_AlphaNotchImage ); fogImage = ImageFromFunction( "_fog", R_FogImage ); fogEnterImage = ImageFromFunction( "_fogEnter", R_FogEnterImage ); normalCubeMapImage = ImageFromFunction( "_normalCubeMap", makeNormalizeVectorCubeMap ); noFalloffImage = ImageFromFunction( "_noFalloff", R_CreateNoFalloffImage ); ImageFromFunction( "_quadratic", R_QuadraticImage ); // cinematicImage is used for cinematic drawing // scratchImage is used for screen wipes/doublevision etc.. cinematicImage = ImageFromFunction("_cinematic", R_RGBA8Image ); scratchImage = ImageFromFunction("_scratch", R_RGBA8Image ); scratchImage2 = ImageFromFunction("_scratch2", R_RGBA8Image ); accumImage = ImageFromFunction("_accum", R_RGBA8Image ); scratchCubeMapImage = ImageFromFunction("_scratchCubeMap", makeNormalizeVectorCubeMap ); currentRenderImage = ImageFromFunction("_currentRender", R_RGBA8Image ); cmdSystem->AddCommand( "reloadImages", R_ReloadImages_f, CMD_FL_RENDERER, "reloads images" ); cmdSystem->AddCommand( "listImages", R_ListImages_f, CMD_FL_RENDERER, "lists images" ); cmdSystem->AddCommand( "combineCubeImages", R_CombineCubeImages_f, CMD_FL_RENDERER, "combines six images for roq compression" ); // should forceLoadImages be here? } /* =============== Shutdown =============== */ void idImageManager::Shutdown() { images.DeleteContents( true ); } /* ==================== BeginLevelLoad Mark all file based images as currently unused, but don't free anything. Calls to ImageFromFile() will either mark the image as used, or create a new image without loading the actual data. ==================== */ void idImageManager::BeginLevelLoad() { insideLevelLoad = true; for ( int i = 0 ; i < images.Num() ; i++ ) { idImage *image = images[ i ]; // generator function images are always kept around if ( image->generatorFunction ) { continue; } if ( com_purgeAll.GetBool() ) { image->PurgeImage(); } image->levelLoadReferenced = false; } } /* ==================== EndLevelLoad Free all images marked as unused, and load all images that are necessary. This architecture prevents us from having the union of two level's worth of data present at one time. preload everything, never free preload everything, free unused after level load blocking load on demand preload low mip levels, background load remainder on demand ==================== */ void idImageManager::EndLevelLoad() { int start = Sys_Milliseconds(); insideLevelLoad = false; if ( idAsyncNetwork::serverDedicated.GetInteger() ) { return; } common->Printf( "----- idImageManager::EndLevelLoad -----\n" ); int purgeCount = 0; int keepCount = 0; int loadCount = 0; // purge the ones we don't need for ( int i = 0 ; i < images.Num() ; i++ ) { idImage *image = images[ i ]; if ( image->generatorFunction ) { continue; } if ( !image->levelLoadReferenced && !image->referencedOutsideLevelLoad ) { // common->Printf( "Purging %s\n", image->imgName.c_str() ); purgeCount++; image->PurgeImage(); } else if ( image->texnum != idImage::TEXTURE_NOT_LOADED ) { // common->Printf( "Keeping %s\n", image->imgName.c_str() ); keepCount++; } } // load the ones we do need, if we are preloading for ( int i = 0 ; i < images.Num() ; i++ ) { idImage *image = images[ i ]; if ( image->generatorFunction ) { continue; } if ( image->levelLoadReferenced && image->texnum == idImage::TEXTURE_NOT_LOADED && !image->partialImage ) { // common->Printf( "Loading %s\n", image->imgName.c_str() ); loadCount++; image->ActuallyLoadImage( true, false ); if ( ( loadCount & 15 ) == 0 ) { session->PacifierUpdate(); } } } int end = Sys_Milliseconds(); common->Printf( "%5i purged from previous\n", purgeCount ); common->Printf( "%5i kept from previous\n", keepCount ); common->Printf( "%5i new loaded\n", loadCount ); common->Printf( "all images loaded in %5.1f seconds\n", (end-start) * 0.001 ); common->Printf( "----------------------------------------\n" ); } /* =============== idImageManager::StartBuild =============== */ void idImageManager::StartBuild() { ddsList.Clear(); ddsHash.Free(); } /* =============== idImageManager::FinishBuild =============== */ void idImageManager::FinishBuild( bool removeDups ) { idFile *batchFile; if ( removeDups ) { ddsList.Clear(); char *buffer = NULL; fileSystem->ReadFile( "makedds.bat", (void**)&buffer ); if ( buffer ) { idStr str = buffer; while ( str.Length() ) { int n = str.Find( '\n' ); if ( n > 0 ) { idStr line = str.Left( n + 1 ); idStr right; str.Right( str.Length() - n - 1, right ); str = right; ddsList.AddUnique( line ); } else { break; } } } } batchFile = fileSystem->OpenFileWrite( ( removeDups ) ? "makedds2.bat" : "makedds.bat" ); if ( batchFile ) { int i; int ddsNum = ddsList.Num(); for ( i = 0; i < ddsNum; i++ ) { batchFile->WriteFloatString( "%s", ddsList[ i ].c_str() ); batchFile->Printf( "@echo Finished compressing %d of %d. %.1f percent done.\n", i+1, ddsNum, ((float)(i+1)/(float)ddsNum)*100.f ); } fileSystem->CloseFile( batchFile ); } ddsList.Clear(); ddsHash.Free(); } /* =============== idImageManager::AddDDSCommand =============== */ void idImageManager::AddDDSCommand( const char *cmd ) { int i, key; if ( !( cmd && *cmd ) ) { return; } key = ddsHash.GenerateKey( cmd, false ); for ( i = ddsHash.First( key ); i != -1; i = ddsHash.Next( i ) ) { if ( ddsList[i].Icmp( cmd ) == 0 ) { break; } } if ( i == -1 ) { ddsList.Append( cmd ); } } /* =============== idImageManager::PrintMemInfo =============== */ void idImageManager::PrintMemInfo( MemInfo_t *mi ) { int i, j, total = 0; int *sortIndex; idFile *f; f = fileSystem->OpenFileWrite( mi->filebase + "_images.txt" ); if ( !f ) { return; } // sort first sortIndex = new int[images.Num()]; for ( i = 0; i < images.Num(); i++ ) { sortIndex[i] = i; } for ( i = 0; i < images.Num() - 1; i++ ) { for ( j = i + 1; j < images.Num(); j++ ) { if ( images[sortIndex[i]]->StorageSize() < images[sortIndex[j]]->StorageSize() ) { int temp = sortIndex[i]; sortIndex[i] = sortIndex[j]; sortIndex[j] = temp; } } } // print next for ( i = 0; i < images.Num(); i++ ) { idImage *im = images[sortIndex[i]]; int size; size = im->StorageSize(); total += size; f->Printf( "%s %3i %s\n", idStr::FormatNumber( size ).c_str(), im->refCount, im->imgName.c_str() ); } delete sortIndex; mi->imageAssetsTotal = total; f->Printf( "\nTotal image bytes allocated: %s\n", idStr::FormatNumber( total ).c_str() ); fileSystem->CloseFile( f ); }